Puede reemplazar la mayoría de estas palabras "rotas" con los originales. Puede reemplazar con seguridad una palabra si:
- como
dene
o rey
, no es una palabra real
- al igual que
define
o firefly
hay una manera de volver a agregar sequeneces de ligadura ( ff
, fi
, fl
, ffi
, o ffl
) y hacer una palabra real
La mayoría de los problemas de ligadura se ajustan a estos criterios. Sin embargo, no puede reemplazar:
us
porque es una palabra real, aunque originalmente podría haber sido fluffs
- también
affirm
, butterfly
` fielders
` fortifies
` flimflam
` misfits
...
cus
porque podría convertirse ya sea en cuffs
oficus
- también
stiffed
/ stifled
, rifle
/ riffle
, flung
/ fluffing
...
En este 496 mil palabras diccionario Inglés , hay 16055 palabras que contienen al menos un ff
, fi
, fl
, ffi
, o ffl
, que se convierten en 15879 palabras, cuando se quitan sus ligaduras. 173 de esas palabras que faltan chocaron como cuffs
y ficus
, y el último 3 se deben a que el diccionario contiene las palabras ff
, fi
y fl
.
790 de estas palabras "eliminadas por ligadura" son palabras reales, como us
, pero 15089 son palabras rotas. 14960 de las palabras rotas se pueden reemplazar de forma segura con la palabra original, lo que significa que el 99.1% de las palabras rotas son reparables y el 93.2% de las palabras originales que contienen una ligadura se pueden recuperar después de copiar y pegar un PDF. El 6,8% de las palabras que contienen secuencias de ligadura se pierden en las colisiones ( cus
) y sub-palabras ( us
), a menos que elija alguna forma (¿contexto de palabra / documento?) Para elegir el mejor reemplazo para cada una de las palabras que no tienen una garantía reemplazo.
A continuación se muestra mi script de Python que generó las estadísticas anteriores. Espera un archivo de texto de diccionario con una palabra por línea. Al final, escribe un archivo CSV que asigna palabras rotas reparables a sus palabras originales.
Aquí hay un enlace para descargar el CSV:
http://www.filedropper.com/brokenligaturewordfixes
Combine esta asignación con algo así como un script de reemplazo de expresiones regulares para reemplazar la mayoría de las palabras rotas.
import csv
import itertools
import operator
import re
dictionary_file_path = 'dictionary.txt'
broken_word_fixes_file_path = 'broken_word_fixes.csv'
ligatures = 'ffi', 'ffl', 'ff', 'fi', 'fl'
with open(dictionary_file_path, 'r') as dictionary_file:
dictionary_words = list(set(line.strip()
for line in dictionary_file.readlines()))
broken_word_fixes = {}
ligature_words = set()
ligature_removed_words = set()
broken_words = set()
multi_ligature_words = set()
# Find broken word fixes for words with one ligature sequence
# Example: "dene" --> "define"
words_and_ligatures = list(itertools.product(dictionary_words, ligatures))
for i, (word, ligature) in enumerate(words_and_ligatures):
if i % 50000 == 0:
print('1-ligature words {percent:.3g}% complete'
.format(percent=100 * i / len(words_and_ligatures)))
for ligature_match in re.finditer(ligature, word):
if word in ligature_words:
multi_ligature_words.add(word)
ligature_words.add(word)
if word == ligature:
break
# Skip words that contain a larger ligature
if (('ffi' in word and ligature != 'ffi') or
('ffl' in word and ligature != 'ffl')):
break
# Replace ligatures with dots to avoid creating new ligatures
# Example: "offline" --> "of.ine" to avoid creating "fi"
ligature_removed_word = (word[:ligature_match.start()] +
'.' +
word[ligature_match.end():])
# Skip words that contain another ligature
if any(ligature in ligature_removed_word for ligature in ligatures):
continue
ligature_removed_word = ligature_removed_word.replace('.', '')
ligature_removed_words.add(ligature_removed_word)
if ligature_removed_word not in dictionary_words:
broken_word = ligature_removed_word
broken_words.add(broken_word)
if broken_word not in broken_word_fixes:
broken_word_fixes[broken_word] = word
else:
# Ignore broken words with multiple possible fixes
# Example: "cus" --> "cuffs" or "ficus"
broken_word_fixes[broken_word] = None
# Find broken word fixes for word with multiple ligature sequences
# Example: "rey" --> "firefly"
multi_ligature_words = sorted(multi_ligature_words)
numbers_of_ligatures_in_word = 2, 3
for number_of_ligatures_in_word in numbers_of_ligatures_in_word:
ligature_lists = itertools.combinations_with_replacement(
ligatures, r=number_of_ligatures_in_word
)
words_and_ligature_lists = list(itertools.product(
multi_ligature_words, ligature_lists
))
for i, (word, ligature_list) in enumerate(words_and_ligature_lists):
if i % 1000 == 0:
print('{n}-ligature words {percent:.3g}% complete'
.format(n=number_of_ligatures_in_word,
percent=100 * i / len(words_and_ligature_lists)))
# Skip words that contain a larger ligature
if (('ffi' in word and 'ffi' not in ligature_list) or
('ffl' in word and 'ffl' not in ligature_list)):
continue
ligature_removed_word = word
for ligature in ligature_list:
ligature_matches = list(re.finditer(ligature, ligature_removed_word))
if not ligature_matches:
break
ligature_match = ligature_matches[0]
# Replace ligatures with dots to avoid creating new ligatures
# Example: "offline" --> "of.ine" to avoid creating "fi"
ligature_removed_word = (
ligature_removed_word[:ligature_match.start()] +
'.' +
ligature_removed_word[ligature_match.end():]
)
else:
# Skip words that contain another ligature
if any(ligature in ligature_removed_word for ligature in ligatures):
continue
ligature_removed_word = ligature_removed_word.replace('.', '')
ligature_removed_words.add(ligature_removed_word)
if ligature_removed_word not in dictionary_words:
broken_word = ligature_removed_word
broken_words.add(broken_word)
if broken_word not in broken_word_fixes:
broken_word_fixes[broken_word] = word
else:
# Ignore broken words with multiple possible fixes
# Example: "ung" --> "flung" or "fluffing"
broken_word_fixes[broken_word] = None
# Remove broken words with multiple possible fixes
for broken_word, fixed_word in broken_word_fixes.copy().items():
if not fixed_word:
broken_word_fixes.pop(broken_word)
number_of_ligature_words = len(ligature_words)
number_of_ligature_removed_words = len(ligature_removed_words)
number_of_broken_words = len(broken_words)
number_of_fixable_broken_words = len(
[word for word in set(broken_word_fixes.keys())
if word and broken_word_fixes[word]]
)
number_of_recoverable_ligature_words = len(
[word for word in set(broken_word_fixes.values())
if word]
)
print(number_of_ligature_words, 'ligature words')
print(number_of_ligature_removed_words, 'ligature-removed words')
print(number_of_broken_words, 'broken words')
print(number_of_fixable_broken_words,
'fixable broken words ({percent:.3g}% fixable)'
.format(percent=(
100 * number_of_fixable_broken_words / number_of_broken_words
)))
print(number_of_recoverable_ligature_words,
'recoverable ligature words ({percent:.3g}% recoverable)'
'(for at least one broken word)'
.format(percent=(
100 * number_of_recoverable_ligature_words / number_of_ligature_words
)))
with open(broken_word_fixes_file_path, 'w+', newline='') as broken_word_fixes_file:
csv_writer = csv.writer(broken_word_fixes_file)
sorted_broken_word_fixes = sorted(broken_word_fixes.items(),
key=operator.itemgetter(0))
for broken_word, fixed_word in sorted_broken_word_fixes:
csv_writer.writerow([broken_word, fixed_word])