Sí , es posible y, sí, hay R
funciones que lo hacen. En lugar de calcular los valores p de los análisis repetidos a mano, puede usar el paquete Zelig
, al que también se hace referencia en la viñeta del Amelia
paquete ( para obtener un método más informativo, consulte mi actualización a continuación ). Amelia
Usaré un ejemplo de la viñeta para demostrar esto:
library("Amelia")
data(freetrade)
amelia.out <- amelia(freetrade, m = 15, ts = "year", cs = "country")
library("Zelig")
zelig.fit <- zelig(tariff ~ pop + gdp.pc + year + polity, data = amelia.out$imputations, model = "ls", cite = FALSE)
summary(zelig.fit)
Este es el resultado correspondiente, incluidos los valores :p
Model: ls
Number of multiply imputed data sets: 15
Combined results:
Call:
lm(formula = formula, weights = weights, model = F, data = data)
Coefficients:
Value Std. Error t-stat p-value
(Intercept) 3.18e+03 7.22e+02 4.41 6.20e-05
pop 3.13e-08 5.59e-09 5.59 4.21e-08
gdp.pc -2.11e-03 5.53e-04 -3.81 1.64e-04
year -1.58e+00 3.63e-01 -4.37 7.11e-05
polity 5.52e-01 3.16e-01 1.75 8.41e-02
For combined results from datasets i to j, use summary(x, subset = i:j).
For separate results, use print(summary(x), subset = i:j).
zelig
Puede adaptarse a una gran cantidad de modelos que no sean mínimos cuadrados.
Para obtener intervalos de confianza y grados de libertad para sus estimaciones, puede usar mitools
:
library("mitools")
imp.data <- imputationList(amelia.out$imputations)
mitools.fit <- MIcombine(with(imp.data, lm(tariff ~ polity + pop + gdp.pc + year)))
mitools.res <- summary(mitools.fit)
mitools.res <- cbind(mitools.res, df = mitools.fit$df)
mitools.res
Esto le dará intervalos de confianza y una proporción de la varianza total atribuible a los datos faltantes:
results se (lower upper) missInfo df
(Intercept) 3.18e+03 7.22e+02 1.73e+03 4.63e+03 57 % 45.9
pop 3.13e-08 5.59e-09 2.03e-08 4.23e-08 19 % 392.1
gdp.pc -2.11e-03 5.53e-04 -3.20e-03 -1.02e-03 21 % 329.4
year -1.58e+00 3.63e-01 -2.31e+00 -8.54e-01 57 % 45.9
polity 5.52e-01 3.16e-01 -7.58e-02 1.18e+00 41 % 90.8
Por supuesto, puede combinar los resultados interesantes en un solo objeto:
combined.results <- merge(mitools.res, zelig.res$coefficients[, c("t-stat", "p-value")], by = "row.names", all.x = TRUE)
Actualizar
Después de jugar un poco, he encontrado una forma más flexible de obtener toda la información necesaria usando el mice
paquete. Para que esto funcione, deberá modificar la función del paquete as.mids()
. Use la versión de Gerko publicada en mi pregunta de seguimiento :
as.mids2 <- function(data2, .imp=1, .id=2){
ini <- mice(data2[data2[, .imp] == 0, -c(.imp, .id)], m = max(as.numeric(data2[, .imp])), maxit=0)
names <- names(ini$imp)
if (!is.null(.id)){
rownames(ini$data) <- data2[data2[, .imp] == 0, .id]
}
for (i in 1:length(names)){
for(m in 1:(max(as.numeric(data2[, .imp])))){
if(!is.null(ini$imp[[i]])){
indic <- data2[, .imp] == m & is.na(data2[data2[, .imp]==0, names[i]])
ini$imp[[names[i]]][m] <- data2[indic, names[i]]
}
}
}
return(ini)
}
Con esto definido, puede continuar analizando los conjuntos de datos imputados:
library("mice")
imp.data <- do.call("rbind", amelia.out$imputations)
imp.data <- rbind(freetrade, imp.data)
imp.data$.imp <- as.numeric(rep(c(0:15), each = nrow(freetrade)))
mice.data <- as.mids2(imp.data, .imp = ncol(imp.data), .id = NULL)
mice.fit <- with(mice.data, lm(tariff ~ polity + pop + gdp.pc + year))
mice.res <- summary(pool(mice.fit, method = "rubin1987"))
Esto le dará todos los resultados que se obtienen utilizando Zelig
y mitools
más:
est se t df Pr(>|t|) lo 95 hi 95 nmis fmi lambda
(Intercept) 3.18e+03 7.22e+02 4.41 45.9 6.20e-05 1.73e+03 4.63e+03 NA 0.571 0.552
pop 3.13e-08 5.59e-09 5.59 392.1 4.21e-08 2.03e-08 4.23e-08 0 0.193 0.189
gdp.pc -2.11e-03 5.53e-04 -3.81 329.4 1.64e-04 -3.20e-03 -1.02e-03 0 0.211 0.206
year -1.58e+00 3.63e-01 -4.37 45.9 7.11e-05 -2.31e+00 -8.54e-01 0 0.570 0.552
polity 5.52e-01 3.16e-01 1.75 90.8 8.41e-02 -7.58e-02 1.18e+00 2 0.406 0.393
Tenga en cuenta que con el uso pool()
también puede calcular los valores con ajustado para muestras pequeñas omitiendo el parámetro. Lo que es aún mejor, ahora también puede calcular y comparar modelos anidados:d f R 2pdfmethod
R2
pool.r.squared(mice.fit)
mice.fit2 <- with(mice.data, lm(tariff ~ polity + pop + gdp.pc))
pool.compare(mice.fit, mice.fit2, method = "Wald")$pvalue