Debe centrar los términos involucrados en la interacción para reducir la colinealidad, por ejemplo
set.seed(10204)
x1 <- rnorm(1000, 10, 1)
x2 <- rnorm(1000, 10, 1)
y <- x1 + rnorm(1000, 5, 5) + x2*rnorm(1000) + x1*x2*rnorm(1000)
x1cent <- x1 - mean(x1)
x2cent <- x2 - mean(x2)
x1x2cent <- x1cent*x2cent
m1 <- lm(y ~ x1 + x2 + x1*x2)
m2 <- lm(y ~ x1cent + x2cent + x1cent*x2cent)
summary(m1)
summary(m2)
Salida:
> summary(m1)
Call:
lm(formula = y ~ x1 + x2 + x1 * x2)
Residuals:
Min 1Q Median 3Q Max
-344.62 -66.29 -1.44 66.05 392.22
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 193.333 335.281 0.577 0.564
x1 -15.830 33.719 -0.469 0.639
x2 -14.065 33.567 -0.419 0.675
x1:x2 1.179 3.375 0.349 0.727
Residual standard error: 101.3 on 996 degrees of freedom
Multiple R-squared: 0.002363, Adjusted R-squared: -0.0006416
F-statistic: 0.7865 on 3 and 996 DF, p-value: 0.5015
> summary(m2)
Call:
lm(formula = y ~ x1cent + x2cent + x1cent * x2cent)
Residuals:
Min 1Q Median 3Q Max
-344.62 -66.29 -1.44 66.05 392.22
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 12.513 3.203 3.907 9.99e-05 ***
x1cent -4.106 3.186 -1.289 0.198
x2cent -2.291 3.198 -0.716 0.474
x1cent:x2cent 1.179 3.375 0.349 0.727
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 101.3 on 996 degrees of freedom
Multiple R-squared: 0.002363, Adjusted R-squared: -0.0006416
F-statistic: 0.7865 on 3 and 996 DF, p-value: 0.5015
library(perturb)
colldiag(m1)
colldiag(m2)
Si usted centra otras variables depende de usted; centrar (en lugar de estandarizar) una variable que no está involucrada en una interacción cambiará el significado de la intercepción, pero no otras cosas, por ejemplo
x1 <- rnorm(1000, 10, 1)
x2 <- x1 - mean(x1)
y <- x1 + rnorm(1000, 5, 5)
m1 <- lm(y ~ x1)
m2 <- lm(y ~ x2)
summary(m1)
summary(m2)
Salida:
> summary(m1)
Call:
lm(formula = y ~ x1)
Residuals:
Min 1Q Median 3Q Max
-16.5288 -3.3348 0.0946 3.4293 14.0678
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.5412 1.6003 4.087 4.71e-05 ***
x1 0.8548 0.1591 5.373 9.63e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 5.082 on 998 degrees of freedom
Multiple R-squared: 0.02812, Adjusted R-squared: 0.02714
F-statistic: 28.87 on 1 and 998 DF, p-value: 9.629e-08
> summary(m2)
Call:
lm(formula = y ~ x2)
Residuals:
Min 1Q Median 3Q Max
-16.5288 -3.3348 0.0946 3.4293 14.0678
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.0965 0.1607 93.931 < 2e-16 ***
x2 0.8548 0.1591 5.373 9.63e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 5.082 on 998 degrees of freedom
Multiple R-squared: 0.02812, Adjusted R-squared: 0.02714
F-statistic: 28.87 on 1 and 998 DF, p-value: 9.629e-08
Pero debe tomar registros de variables porque tiene sentido hacerlo o porque los residuos del modelo indican que debería hacerlo, no porque tengan mucha variabilidad. La regresión no hace suposiciones sobre la distribución de las variables, hace suposiciones sobre la distribución de los residuos.