En la superficie (o en aislamiento de la realidad) ambas declaraciones parecen ser igualmente inútiles para el objetivo del estado. Sin embargo, considerando el contexto, la segunda declaración es claramente más útil.
Declaración 2
Veamos qué podemos extraer de la segunda declaración. La proporción de mujeresw among all survived is:
w = p x / ( p x + ( 1 - p ) z)
dónde
pag - proporción de mujeres entre pasajeros,
X y
zson las probabilidades de supervivencia de mujeres y hombres. El denominador es la tasa de supervivencia total.
Estamos probando hipo H0 0: x > z
Reescribamos la ecuación para obtener las condiciones necesarias para H0 0:
( 1 - w ) p x = w ( 1 - p ) z
x = w ( 1 - p ) z/((1−w)p)
For
H0 to hold we have:
x=w(1−p)z/((1−w)p)>z
w(1−p)>(1−w)p
0.9(1−p)>0.1p
1−p>p/9
p<0.9
So, for your hypo that women were more likely to survive, all you need is to check that there were less than 90% women among the passengers. This is consistent with your assumption 2, which seems to imply that p≈1/2. Hence, I declare that statement 2 all but asserts that women were more likely to survive, i.e. it's quite useful for your goal.
Statement 1
The first statement is truly useless in isolation, but has a limited use in the context. If we pretend we know nothing about the event, then saying that x=0.9 tells us nothing about z, and whether x>z?
However, from that little that I know about the event - I haven't seen the movie - it seems unlikely that x≤z. Why?
We know from Assumption 2 that p≈1/2, so the total survival rate is
px+(1−p)z. If we assume that x≈z and p≈1/2 we get
px+(1−p)z≈x=0.9
In other words 90% of all passengers survived, which doesn't ring true to me. Would they make a movie and talk about it for 100 years if 90% of passengers survived? So, it must be that
x>>z and less than half of passengers made it.
Conclusion
Diría que ambas declaraciones respaldan su hipo de que las mujeres tenían más probabilidades de sobrevivir que los hombres, pero la Declaración 1 lo hace de manera bastante débil, mientras que la Declaración 2 en combinación con suposiciones casi seguramente establece su hipo como un hecho.