Esta respuesta enfatiza la verificación de la estimabilidad. La propiedad de varianza mínima es de mi consideración secundaria.
Para comenzar, resuma la información en términos de forma matricial de un modelo lineal de la siguiente manera:
Y : = [ Y 1 Y 2 Y 3 Y 4 ] = [ 1 0 - 1 1 1 - 1 1 0 - 1 1 - 1 - 1 ] [ θ 1 θ 2 θ 3 ] + [ ε 1 ε 2 ε 3 ε 4 ] : =X β + ε ,
dondeE(ε)=0,Var(ε)=σ2I(para discutir la estimabilidad, el supuesto de esferidad no es necesario. Pero para discutir la propiedad de Gauss-Markov, necesitamos asumir la esferidad deε).
Y:=⎡⎣⎢⎢⎢Y1Y2Y3Y4⎤⎦⎥⎥⎥=⎡⎣⎢⎢⎢1111010−1−1−1−1−1⎤⎦⎥⎥⎥⎡⎣⎢θ1θ2θ3⎤⎦⎥+⎡⎣⎢⎢⎢ε1ε2ε3ε4⎤⎦⎥⎥⎥:=Xβ+ε,(1)
E(ε)=0,Var(ε)=σ2Iε
Si la matriz de diseño X es de rango completo, entonces el parámetro original β admite un único mínimos cuadrados estiman β = ( X ' X ) - 1 X ' Y . En consecuencia, cualquier parámetro φ , definida como una función lineal φ ( β ) de β es estimable en el sentido de que puede ser inequívocamente estima por datos a través de los mínimos cuadrados estimar β como φ = p ' β .Xββ^=(X′X)−1X′Yϕϕ(β)ββ^ϕ^=p′β^
La sutileza surge cuando X no es de rango completo. Para tener una discusión exhaustiva, primero arreglamos algunas anotaciones y términos (sigo la convención de El enfoque libre de coordenadas para modelos lineales , Sección 4.8. Algunos de los términos suenan innecesariamente técnicos). Además, la discusión se aplica al modelo lineal general Y = X β + ε con X ∈ R n × k y β ∈ R k .XY=Xβ+εX∈Rn×kβ∈Rk
- A regression manifold is the collection of mean vectors as ββ varies over RkRk:
M={Xβ:β∈Rk}.
M={Xβ:β∈Rk}.
- A parametric functional ϕ=ϕ(β)ϕ=ϕ(β) is a linear functional of ββ,
ϕ(β)=p′β=p1β1+⋯+pkβk.
ϕ(β)=p′β=p1β1+⋯+pkβk.
As mentioned above, when rank(X)<krank(X)<k, not every parametric functional ϕ(β)ϕ(β) is estimable. But, wait, what is the definition of the term estimable technically? It seems difficult to give a clear definition without bothering a little linear algebra. One definition, which I think is the most intuitive, is as follows (from the same aforementioned reference):
Definition 1. A parametric functional ϕ(β)ϕ(β) is estimable if it is uniquely determined by XβXβ in the sense that ϕ(β1)=ϕ(β2)ϕ(β1)=ϕ(β2) whenever β1,β2∈Rkβ1,β2∈Rk satisfy Xβ1=Xβ2Xβ1=Xβ2.
Interpretation. The above definition stipulates that the mapping from the regression manifold MM to the parameter space of ϕϕ must be one-to-one, which is guaranteed when rank(X)=krank(X)=k (i.e., when XX itself is one-to-one). When rank(X)<krank(X)<k, we know that there exist β1≠β2β1≠β2 such that Xβ1=Xβ2Xβ1=Xβ2. The estimable definition above in effect rules out those structural-deficient parametric functionals that result in different values themselves even with the same value on MM, which don't make sense naturally. On the other hand, an estimable parametric functional ϕ(⋅)ϕ(⋅) does allow the case ϕ(β1)=ϕ(β2)ϕ(β1)=ϕ(β2) with β1≠β2β1≠β2, as long as
the condition Xβ1=Xβ2Xβ1=Xβ2 is fulfilled.
There are other equivalent conditions to check the estimability of a parametric functional given in the same reference, Proposition 8.4.
After such a verbose background introduction, let's come back to your question.
A. ββ itself is non-estimable for the reason that rank(X)<3rank(X)<3, which entails Xβ1=Xβ2Xβ1=Xβ2 with β1≠β2β1≠β2. Although the above definition is given for scalar functionals, it is easily generalized to vector-valued functionals.
B. ϕ1(β)=θ1+θ3=(1,0,1)′βϕ1(β)=θ1+θ3=(1,0,1)′β is non-estimable. To wit, consider β1=(0,1,0)′β1=(0,1,0)′ and β2=(1,1,1)′β2=(1,1,1)′, which gives Xβ1=Xβ2Xβ1=Xβ2 but ϕ1(β1)=0+0=0≠ϕ1(β2)=1+1=2ϕ1(β1)=0+0=0≠ϕ1(β2)=1+1=2.
C. ϕ2(β)=θ1−θ3=(1,0,−1)′βϕ2(β)=θ1−θ3=(1,0,−1)′β is estimable. Because Xβ1=Xβ2Xβ1=Xβ2 trivially implies θ(1)1−θ(1)3=θ(2)1−θ(2)3θ(1)1−θ(1)3=θ(2)1−θ(2)3, i.e., ϕ2(β1)=ϕ2(β2)ϕ2(β1)=ϕ2(β2).
D. ϕ3(β)=θ2=(0,1,0)′βϕ3(β)=θ2=(0,1,0)′β is also estimable. The derivation from Xβ1=Xβ2Xβ1=Xβ2 to ϕ3(β1)=ϕ3(β2)ϕ3(β1)=ϕ3(β2) is also trivial.
After the estimability is verified, there is a theorem (Proposition 8.16, same reference) claims the Gauss-Markov property of ϕ(β)ϕ(β). Based on that theorem, the second part of option C is incorrect. The best linear unbiased estimate is ˉY=(Y1+Y2+Y3+Y4)/4Y¯=(Y1+Y2+Y3+Y4)/4, by the theorem below.
Theorem. Let ϕ(β)=p′βϕ(β)=p′β be an estimable parametric functional, then its best linear unbiased estimate (aka, Gauss-Markov estimate) is ϕ(ˆβ)ϕ(β^) for any solution ˆββ^ to the normal equations X′Xˆβ=X′YX′Xβ^=X′Y.
The proof goes as follows:
Proof. Straightforward calculation shows that the normal equations is
[40−4020−404]ˆβ=[1111010−1−1−1−1−1]Y,
⎡⎣⎢40−4020−404⎤⎦⎥β^=⎡⎣⎢10−111−110−11−1−1⎤⎦⎥Y,
which, after simplification, is
[ϕ(ˆβ)ˆθ2/2−ϕ(ˆβ)]=[ˉY(Y2−Y4)/4−ˉY],⎡⎣⎢⎢ϕ(β^)θ^2/2−ϕ(β^)⎤⎦⎥⎥=⎡⎣⎢Y¯(Y2−Y4)/4−Y¯⎤⎦⎥,
i.e., ϕ(ˆβ)=ˉYϕ(β^)=Y¯.
Therefore, option D is the only correct answer.
Addendum: The connection of estimability and identifiability
When I was at school, a professor briefly mentioned that the estimability of the parametric functional ϕϕ corresponds to the model identifiability. I took this claim for granted then. However, the equivalance needs to be spelled out more explicitly.
According to A.C. Davison's monograph Statistical Models p.144,
Definition 2. A parametric model in which each parameter θθ generates a different distribution is called identifiable.
For linear model (1)(1), regardless the spherity condition Var(ε)=σ2IVar(ε)=σ2I, it can be reformulated as
E[Y]=Xβ,β∈Rk.
E[Y]=Xβ,β∈Rk.(2)
It is such a simple model that we only specified the first moment form of the response vector YY. When rank(X)=krank(X)=k, model (2)(2) is identifiable since β1≠β2β1≠β2 implies Xβ1≠Xβ2Xβ1≠Xβ2 (the word "distribution" in the original definition, naturally reduces to
"mean" under model (2)(2).).
Now suppose that rank(X)<krank(X)<k and a given parametric functional ϕ(β)=p′βϕ(β)=p′β, how do we reconcile Definition 1 and Definition 2?
Well, by manipulating notations and words, we can show that (the "proof" is rather trivial) the estimability of ϕ(β)ϕ(β) is equivalent to that the model (2)(2) is identifiable when it is parametrized with parameter ϕ=ϕ(β)=p′βϕ=ϕ(β)=p′β (the design matrix XX is likely to change accordingly). To prove, suppose ϕ(β)ϕ(β) is estimable so that Xβ1=Xβ2Xβ1=Xβ2 implies p′β1=p′β2p′β1=p′β2, by definition, this is ϕ1=ϕ2ϕ1=ϕ2, hence model (3)(3) is identifiable when indexing with ϕϕ. Conversely, suppose model (3)(3) is identifiable so that Xβ1=Xβ2Xβ1=Xβ2 implies ϕ1=ϕ2ϕ1=ϕ2, which is trivially ϕ1(β)=ϕ2(β)ϕ1(β)=ϕ2(β).
Intuitively, when XX is reduced-ranked, the model with ββ is parameter redundant (too many parameters) hence a non-redundant lower-dimensional reparametrization (which could consist of a collection of linear functionals) is possible. When is such new representation possible? The key is estimability.
To illustrate the above statements, let's reconsider your example. We have verified parametric functionals ϕ2(β)=θ1−θ3ϕ2(β)=θ1−θ3 and ϕ3(β)=θ2ϕ3(β)=θ2 are estimable. Therefore, we can rewrite the model (1)(1) in terms of the reparametrized parameter (ϕ2,ϕ3)′(ϕ2,ϕ3)′ as follows
E[Y]=[1011101−1][ϕ2ϕ3]=˜Xγ.
E[Y]=⎡⎣⎢⎢⎢1111010−1⎤⎦⎥⎥⎥[ϕ2ϕ3]=X~γ.
Clearly, since ˜XX~ is full-ranked, the model with the new parameter γγ is identifiable.
self-study
etiqueta o alguien vendrá y cerrará su pregunta.