I am surprised that you don't consider us authorities. Here is a good reference:
Encyclopedia of Biostatistics, Volume 2, page 1526; article titled "Fisher, Ronald Aylmer." Starting at the bottom of the first column on the page and going through most of the second column the authors Joan Fisher Box (R. A. Fisher's daughter) and A. W. F. Edwards write
Fisher introduced the the fiducial argument in 1930 [11]....
Controversy arose immediately. fisher had proposed the fiducial
argument as an alternative to the Bayesian argument of inverse
probability, which he condemned when no objective prior probability
could be stated.
Continúan discutiendo los debates con Jeffreys y Neyman (particularmente Neyman en intervalos de confianza). La teoría de Neyman-Pearson de la prueba de hipótesis y los intervalos de confianza surgieron en la década de 1930 después del artículo de Fisher. Siguió una oración clave.
Las dificultades posteriores con el argumento fiducial surgieron en casos de estimación multivariante debido a la falta de uniformidad de los pivotales.
En el mismo volumen de la Enciclopedia de Bioestadística hay un artículo pp. 1510-1515 titulado "Probabilidad Fiducial" por Teddy Seidenfeld que cubre el método en detalle y compara los intervalos fiduciales con los intervalos de confianza. Para citar el último párrafo de ese artículo,
En una conferencia de 1963 sobre probabilidad fiducial, Savage escribió "El objetivo de la probabilidad fiducial ... parece ser lo que yo llamo hacer la tortilla bayesiana sin romper los huevos bayesianos". En ese sentido, la probabilidad fiducial es imposible. Al igual que con muchas grandes contribuciones intelectuales, lo que tiene un valor duradero es lo que aprendemos tratando de comprender las ideas de Fisher sobre la probabilidad fiducial. (Ver Edwards [4] para mucho más sobre este tema). Su solución al problema de Behrens-Fisher, por ejemplo, fue un tratamiento brillante de los parámetros molestos usando el teorema de Bayes. En este sentido, "... el argumento fiducial es 'aprender de Fisher' [36, p.926]. Así interpretado, ciertamente sigue siendo una valiosa adición al saber estadístico.
Creo que en estas últimas oraciones Edwards está tratando de poner una luz favorable sobre Fisher a pesar de que su teoría fue desacreditada. Estoy seguro de que puede encontrar una gran cantidad de información al respecto revisando estos artículos de la enciclopedia y otros similares en otros documentos estadísticos, así como artículos biográficos y libros sobre Fisher.
Algunas otras referencias
Box, J. Fisher (1978). "TA Fisher: la vida de un científico". Wiley, Nueva York Fisher, RA (1930) Probabilidad inversa. Actas de la Sociedad Filosófica de Cambridge. 26, 528-535.
Bennett, editor de JH (1990) Análisis e inferencia estadística: correspondencia seleccionada de RA Fisher. Clarendon Press, Oxford.
Edwards, AWF (1995). La inferencia fiducial y la teoría fundamental de la selección natural. Biometría 51,799-809.
Savage LJ (1963) Discusión. Boletín del Instituto Internacional de Estadística 40, 925-927.
Seidenfeld, T. (1979). "Problemas filosóficos de inferencia estadística" Reidel, Dordrecht. Seidenfeld, T. (1992). El argumento fiducial de RA Fisher y el teorema de Bayes. Ciencia Estadística 7, 358-368.
Tukey, JW (1957). Algunos ejemplos con relevancia fiducial. Anales de Estadística Matemática 28, 687-695.
Zabell, SL (1992). RA Fisher y el argumento fiducial. Ciencia estadística 7, 369-387.
El concepto es difícil de entender porque el pescador lo siguió cambiando como dijo Seidenfeld en su artículo en la Enciclopedia de Bioestadística
Following the 1930 publication, during the remaining 32 years of his
life, through two books and numerous articles , Fisher steadfastly
held to the idea captured in (1), and the reasoning leading to it
which we may call'fiducial inverse inference' then there is little
wonder that Fisher caused such puzzles with his novel idea
Equation (1) that Seidenfeld refers to is the fiducial distribution of the parameter θ given x as fid(θ|x)∝∂F/∂θ where F(x,θ) denotes a one-parameter cumulative distribution function for the random variable X at x with parameter θ. At least this was Fisher's initial definition. Later it got extended to multiple parameters and that is where the trouble began with the nuisance parameter σ in the Behrens-Fisher problem. So a fiducial distribution is like a posterior distribution for the parameter θ given the observed data x. But it is constructed without the inclusion of a prior distribution on θ.
I went to some trouble getting all this but it is not hard to find. We are really not needed to answer questions like this. A Google search with key words "fiducial inference" would likely show everything I found and a whole lot more.
I did a Google search and found that a UNC Professor Jan Hannig has generalized fiducial inference in an attempt to improve it. A Google search yields a number of his recent papers and a powerpoint presentation. I am going to copy and paste the last two slides from his presentation below:
Concluding Remarks
Generalized fiducial distributions lead often to
attractive solution with asymptotically correct
frequentist coverage.
Many simulation studies show that generalized fiducial
solutions have very good small sample properties.
Current popularity of generalized inference in some
applied circles suggests that if computers were
available 70 years ago, fiducial inference might not
have been rejected.
Quotes
Zabell (1992) “Fiducial inference stands as R. A.
Fisher’s one great failure.”
Efron (1998) “Maybe Fisher’s biggest blunder will
become a big hit in the 21st century! "
Just to add more references, here is the reference list I have taken from Hannig's 2009 Statistics Sinica paper. Pardon the repetition but I think this will be helpful.
Burch, B. D. and Iyer, H. K. (1997). Exact confidence intervals for a variance ratio (or heri-
tability) in a mixed linear model. Biometrics 53, 1318-1333.
Burdick, R. K., Borror, C. M. and Montgomery, D. C. (2005a). Design and Analysis of Gauge
R&R Studies. ASA-SIAM Series on Statistics and Applied Probability. Philadelphia, PA:
Society for Industrial and Applied Mathematics.
Burdick, R. K., Park, Y.-J., Montgomery, D. C. and Borror, C. M. (2005b). Confidence intervals for misclassification rates in a gauge R&R study. J. Quality Tech. 37, 294-303.
Cai, T. T. (2005). One-sided confidence intervals in discrete distributions. J. Statist. Plann. Inference 131, 63-88.
Casella, G. and Berger, R. L. (2002). Statistical Inference. Wadsworth and Brooks/Cole Ad-
vanced Books and Software, Pacific Grove, CA, second edn.
Daniels, L., Burdick, R. K. and Quiroz, J. (2005). Confidence Intervals in a Gauge R&R Study with Fixed Operators. J. Quality Tech. 37, 179-185.
Dawid, A. P. and Stone, M. (1982). The functional-model basis of fiducial inference. Ann.
Statist. 10, 1054-1074. With discussions by G. A. Barnard and by D. A. S. Fraser, and a
reply by the authors.
Dawid, A. P., Stone, M. and Zidek, J. V. (1973). Marginalization paradoxes in Bayesian and
structural inference. J. Roy. Statist. Soc. Ser. B 35, 189-233. With discussion by D. J.
Bartholomew, A. D. McLaren, D. V. Lindley, Bradley Efron, J. Dickey, G. N. Wilkinson,
A. P.Dempster, D. V. Hinkley, M. R. Novick, Seymour Geisser, D. A. S. Fraser and A.
Zellner, and a reply by A. P. Dawid, M. Stone, and J. V. Zidek.
Dempster, A. P. (1966). New methods for reasoning towards posterior distributions based on
sample data. Ann. Math. Statist. 37, 355-374.
Dempster, A. P. (1968). A generalization of Bayesian inference. (With discussion). J. Roy.
Statist. Soc. B 30, 205-247.
Dempster, A. P. (2008). The Dempster-Shafer calculus for statisticians. International Journal
of Approximate Reasoning 48, 365-377.
E, L., Hannig, J. and Iyer, H. K. (2008). Fiducial intervals for variance components in an
unbalanced two-component normal mixed linear model. J. Amer. Statist. Assoc. 103, 854-
865.
Efron, B. (1998). R. A. Fisher in the 21st century. Statist. Sci. 13, 95-122. With comments and
a rejoinder by the author.
Fisher, R. A. (1930). Inverse probability. Proceedings of the Cambridge Philosophical Society
xxvi, 528-535.
Fisher, R. A. (1933). The concepts of inverse probability and fiducial probability referring to
unknown parameters. Proceedings of the Royal Society of London A 139, 343-348.
Fisher, R. A. (1935a). The fiducial argument in statistical inference. Ann. Eugenics VI, 91-98.
Fisher, R. A. (1935b). The logic of inductive inference. J. Roy. Statist. Soc. B 98, 29-82.
Fraser, D. A. S. (1961). On fiducial inference. Ann. Math. Statist. 32, 661-676.
Fraser, D. A. S. (1966). Structural probability and a generalization. Biometrika 53, 1–9.
Fraser, D. A. S. (1968). The Structure of Inference. John Wiley & Sons, New York-London-
Sydney.
Fraser, D. A. S. (2006). Fiducial inference. In The New Palgrave Dictionary of Economics
(Edited by S. Durlauf and L. Blume). Palgrave Macmillan, 2nd edition.
ON GENERALIZED FIDUCIAL INFERENCE 543
Ghosh, J. K. (1994). Higher Order Assymptotics. NSF-CBMS Regional Conference Series. Hay-
ward: Institute of Mathematical Statistics.
Ghosh, J. K. and Ramamoorthi, R. V. (2003). Bayesian Nonparametrics. Springer Series in
Statistics. Springer-Verlag, New York.
Glagovskiy, Y. S. (2006). Construction of Fiducial Confidence Intervals For the Mixture of
Cauchy and Normal Distributions. Master’s thesis, Department of Statistics, Colorado
State University.
Grundy, P. M. (1956). Fiducial distributions and prior distributions: an example in which the
former cannot be associated with the latter. J. Roy. Statist. Soc. Ser. B 18, 217-221.
GUM (1995). Guide to the Expression of Uncertainty in Measurement. International Organiza-
tion for Standardization (ISO), Geneva, Switzerland.
Hamada, M. and Weerahandi, S. (2000). Measurement system assessment via generalized infer-
ence. J. Quality Tech. 32, 241-253.
Hannig, J. (1996). On conditional distributions as limits of martingales. Mgr. thesis, (in czech),
Charles University, Prague, Czech Republic.
Hannig, J., E, L., Abdel-Karim, A. and Iyer, H. K. (2006a) Simultaneous fiducial generalized
confidence intervals for ratios of means of lognormal distributions. Austral. J. Statist. 35,
261-269.
Hannig, J., Iyer, H. K. and Patterson, P. (2006b) Fiducial generalized confidence intervals. J.
Amer. Statist. Assoc. 101, 254-269.
Hannig, J. and Lee, T. C. M. (2007). Generalized fiducial inference for wavelet regression. Tech.
rep., Colorado State University.
Iyer, H. K. and Patterson, P. (2002). A recipe for constructing generalized pivotal quantities and
generalized confidence intervals. Tech. Rep. 2002/10, Department of Statistics, Colorado
State University.
Iyer, H. K., Wang, C. M. J. and Mathew, T. (2004). Models and confidence intervals for true
values in interlaboratory trials. J. Amer. Statist. Assoc. 99, 1060-1071.
Jeffreys, H. (1940). Note on the Behrens-Fisher formula. Ann. Eugenics 10, 48-51.
Jeffreys, H. (1961). Theory of Probability. Clarendon Press, Oxford, third edn.
Le Cam, L. and Yang, G. L. (2000). Asymptotics in Statistics. Springer Series in Statistics. New
York: Springer-Verlag, second edn.
Liao, C. T. and Iyer, H. K. (2004). A tolerance interval for the normal distribution with several
variance components. Statist. Sinica 14, 217-229.
Lindley, D. V. (1958). Fiducial distributions and Bayes’ theorem. J. Roy. Statist. Soc. Ser. B
20, 102-107.
McNally, R. J., Iyer, H. K. and Mathew, T. (2003). Tests for individual and population bioe-
quivalence based on generalized p-values. Statistics in Medicine 22, 31-53.
Mood, A. M., Graybill, F. A. and Boes, D. C. (1974). Introduction to the Theory of Statistics.
McGraw-Hill, third edn.
Pounds, S. and Morris, S. W. (2003). Estimating the occurrence of false positives and false neg-
atives in microarray studies by approximating and partitioning the empirical distribution
of p-values. Bioinformatics 19, 123601242.
Salome, D. (1998). Staristical Inference via Fiducial Methods. Ph.D. thesis, University of Gronin-
gen.
544 JAN HANNIG
Searle, S. R., Casella, G. and McCulloch, C. E. (1992). Variance Components. John Wiley &
Sons, New York.
Stevens, W. L. (1950). Fiducial limits of the parameter of a discontinuous distribution.
Biometrika 37, 117-129.
Tsui, K.-W. and Weerahandi, S. (1989). Generalized p-values in significance testing of hypothe-
ses in the presence of nuisance parameters. J. Amer. Statist. Assoc. 84, 602-607.
Wang, C. M. and Iyer, H. K. (2005). Propagation of uncertainties in measurements using gen-
eralized inference. Metrologia 42, 145-153.
Wang, C. M. and Iyer, H. K. (2006a). A generalized confidence interval for a measurand in the
presence of type-A and type-B uncertainties. Measurement 39, 856–863.
Wang, C. M. and Iyer, H. K. (2006b). Uncertainty analysis for vector measurands using fiducial
inference. Metrologia 43, 486-494.
Weerahandi, S. (1993). Generalized confidence intervals. J. Amer. Statist. Assoc. 88, 899-905.
Weerahandi, S. (2004). Generalized Inference in Repeated Measures. Wiley, Hoboken, NJ.
Wilkinson, G. N. (1977). On resolving the controversy in statistical inference. J. Roy. Statist.
Soc. Ser. B 39, 119-171. With discussion.
Yeo, I.-K. and Johnson, R. A. (2001). A uniform strong law of large numbers for U-statistics
with application to transforming to near symmetry. Statist. Probab. Lett. 51, 63-69.
Zabell, S. L. (1992). R. A. Fisher and the fiducial argument. Statist. Sci. 7, 369-387.
Department of Statistics and Operations Research, The University of North Carolina at Chapel
Hill, Chapel Hill, NC 27599-3260, U.S.A.
E-mail: hannig@unc.edu
(Received November 2006; accepted December 2007)
The article i got this from is
Statistica Sinica 19 (2009), 491-544
ON GENERALIZED FIDUCIAL INFERENCE∗
Jan Hannig
The University of North Carolina at Chapel Hill