¡Este es realmente un problema extremadamente sofisticado y una pregunta difícil de su profesor!
En términos de cómo organizar sus datos, un rectángulo de 1070 x 10 está bien. Por ejemplo, en R:
> conflict.data <- data.frame(
+ confl = sample(0:1, 1070, replace=T),
+ country = factor(rep(1:107,10)),
+ period = factor(rep(1:10, rep(107,10))),
+ landdeg = sample(c("Type1", "Type2"), 1070, replace=T),
+ popincrease = sample(0:1, 1070, replace=T),
+ liveli =sample(0:1, 1070, replace=T),
+ popden = sample(c("Low", "Med", "High"), 1070, replace=T),
+ NDVI = rnorm(1070,100,10),
+ NDVIdecl1 = sample(0:1, 1070, replace=T),
+ NDVIdecl2 = sample(0:1, 1070, replace=T))
> head(conflict.data)
confl country period landdeg popincrease liveli popden NDVI NDVIdecl1 NDVIdecl2
1 1 1 1 Type1 1 0 Low 113.4744 0 1
2 1 2 1 Type2 1 1 High 103.2979 0 0
3 0 3 1 Type2 1 1 Med 109.1200 1 1
4 1 4 1 Type2 0 1 Low 112.1574 1 0
5 0 5 1 Type1 0 0 High 109.9875 0 1
6 1 6 1 Type1 1 0 Low 109.2785 0 0
> summary(conflict.data)
confl country period landdeg popincrease liveli popden NDVI NDVIdecl1 NDVIdecl2
Min. :0.0000 1 : 10 1 :107 Type1:535 Min. :0.0000 Min. :0.0000 High:361 Min. : 68.71 Min. :0.0000 Min. :0.0000
1st Qu.:0.0000 2 : 10 2 :107 Type2:535 1st Qu.:0.0000 1st Qu.:0.0000 Low :340 1st Qu.: 93.25 1st Qu.:0.0000 1st Qu.:0.0000
Median :1.0000 3 : 10 3 :107 Median :1.0000 Median :1.0000 Med :369 Median : 99.65 Median :1.0000 Median :0.0000
Mean :0.5009 4 : 10 4 :107 Mean :0.5028 Mean :0.5056 Mean : 99.84 Mean :0.5121 Mean :0.4888
3rd Qu.:1.0000 5 : 10 5 :107 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:106.99 3rd Qu.:1.0000 3rd Qu.:1.0000
Max. :1.0000 6 : 10 6 :107 Max. :1.0000 Max. :1.0000 Max. :130.13 Max. :1.0000 Max. :1.0000
(Other):1010 (Other):428
> dim(conflict.data)
[1] 1070 10
Para ajustar un modelo, la función glm () como sugiere @ gui11aume hará lo básico ...
mod <- glm(confl~., family="binomial", data=conflict.data)
anova(mod)
... pero esto tiene el problema de que trata el "país" (supongo que tiene el país como sus 107 unidades) como un efecto fijo, mientras que un efecto aleatorio es más apropiado. También trata el período como un factor simple, no se permite la autocorrelación.
Puede abordar el primer problema con un modelo de efectos mixtos lineales generalizados como, por ejemplo, en el paquete lme4 de Bates et al en R. Hay una buena introducción a algunos aspectos de esto aquí . Algo como
library(lme4)
mod2 <- lmer(confl ~ landdeg + popincrease + liveli + popden +
NDVI + NDVIdecl1 + NDVIdecl2 + (1|country) +(1|period), family=binomial,
data=conflict.data)
summary(mod2)
Sería un paso adelante.
Ahora su último problema restante es la autocorrelación en sus 10 períodos. Básicamente, sus 10 puntos de datos en cada país no valen tanto como si fueran 10 puntos distribuidos independientes e identificados elegidos al azar. No conozco una solución de software ampliamente disponible para la autocorrelación en los residuos de un modelo multinivel con una respuesta no normal. Ciertamente no está implementado en lme4. Otros pueden saber más que yo.