Dado que el error estándar de una regresión lineal generalmente se da para la variable de respuesta, me pregunto cómo obtener intervalos de confianza en la otra dirección, por ejemplo, para una intersección x. Puedo visualizar lo que podría ser, pero estoy seguro de que debe haber una forma directa de hacerlo. A continuación se muestra un ejemplo en R de cómo visualizar esto:
set.seed(1)
x <- 1:10
a <- 20
b <- -2
y <- a + b*x + rnorm(length(x), mean=0, sd=1)
fit <- lm(y ~ x)
XINT <- -coef(fit)[1]/coef(fit)[2]
plot(y ~ x, xlim=c(0, XINT*1.1), ylim=c(-2,max(y)))
abline(h=0, lty=2, col=8); abline(fit, col=2)
points(XINT, 0, col=4, pch=4)
newdat <- data.frame(x=seq(-2,12,len=1000))
# CI
pred <- predict(fit, newdata=newdat, se.fit = TRUE)
newdat$yplus <-pred$fit + 1.96*pred$se.fit
newdat$yminus <-pred$fit - 1.96*pred$se.fit
lines(yplus ~ x, newdat, col=2, lty=2)
lines(yminus ~ x, newdat, col=2, lty=2)
# approximate CI of XINT
lwr <- newdat$x[which.min((newdat$yminus-0)^2)]
upr <- newdat$x[which.min((newdat$yplus-0)^2)]
abline(v=c(lwr, upr), lty=3, col=4)
library(boot); sims <- boot(data.frame(x, y), function(d, i) { fit <- lm(y ~ x, data = d[i,]) -coef(fit)[1]/coef(fit)[2] }, R = 1e4); points(quantile(sims$t, c(0.025, 0.975)), c(0, 0))
. Para intervalos de predicción inversa, el archivo de ayudachemCal:::inverse.predict
proporciona la siguiente referencia que también podría ayudar a derivar un IC: Massart, LM, Vandenginste, BGM, Buydens, LMC, De Jong, S., Lewi, PJ, Smeyers-Verbeke, J. (1997 ) Manual de quimiometría y calimetría: Parte A, p. 200