Hasta donde sé, la diferencia entre el modelo logístico y el modelo de respuesta fraccional (frm) es que la variable dependiente (Y) en la que frm es [0,1], pero la logística es {0, 1}. Además, frm usa el estimador de cuasi-verosimilitud para determinar sus parámetros.
Normalmente, podemos utilizar glm
para obtener los modelos logísticos por glm(y ~ x1+x2, data = dat, family = binomial(logit))
.
Por el momento, cambiamos family = binomial(logit)
a family = quasibinomial(logit)
.
Noté que también podemos usar family = binomial(logit)
para obtener el parámetro de frm ya que da los mismos valores estimados. Ver el siguiente ejemplo
library(foreign)
mydata <- read.dta("k401.dta")
glm.bin <- glm(prate ~ mrate + age + sole + totemp, data = mydata
,family = binomial('logit'))
summary(glm.bin)
regreso,
Call:
glm(formula = prate ~ mrate + age + sole + totemp, family = binomial("logit"),
data = mydata)
Deviance Residuals:
Min 1Q Median 3Q Max
-3.1214 -0.1979 0.2059 0.4486 0.9146
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.074e+00 8.869e-02 12.110 < 2e-16 ***
mrate 5.734e-01 9.011e-02 6.364 1.97e-10 ***
age 3.089e-02 5.832e-03 5.297 1.17e-07 ***
sole 3.636e-01 9.491e-02 3.831 0.000128 ***
totemp -5.780e-06 2.207e-06 -2.619 0.008814 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1166.6 on 4733 degrees of freedom
Residual deviance: 1023.7 on 4729 degrees of freedom
AIC: 1997.6
Number of Fisher Scoring iterations: 6
Y para family = quasibinomial('logit')
,
glm.quasi <- glm(prate ~ mrate + age + sole + totemp, data = mydata
,family = quasibinomial('logit'))
summary(glm.quasi)
regreso,
Call:
glm(formula = prate ~ mrate + age + sole + totemp, family = quasibinomial("logit"),
data = mydata)
Deviance Residuals:
Min 1Q Median 3Q Max
-3.1214 -0.1979 0.2059 0.4486 0.9146
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.074e+00 4.788e-02 22.435 < 2e-16 ***
mrate 5.734e-01 4.864e-02 11.789 < 2e-16 ***
age 3.089e-02 3.148e-03 9.814 < 2e-16 ***
sole 3.636e-01 5.123e-02 7.097 1.46e-12 ***
totemp -5.780e-06 1.191e-06 -4.852 1.26e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for quasibinomial family taken to be 0.2913876)
Null deviance: 1166.6 on 4733 degrees of freedom
Residual deviance: 1023.7 on 4729 degrees of freedom
AIC: NA
Number of Fisher Scoring iterations: 6
La beta estimada de ambos family
es la misma, pero la diferencia son los valores de SE. Sin embargo, para obtener el SE correcto, tenemos que usarlo library(sandwich)
como en esta publicación .
Ahora, mis preguntas:
- ¿Cuál es la diferencia entre estos dos códigos?
- ¿Está a punto de obtener un SE robusto?
Si mi comprensión no es correcta, por favor dé algunas sugerencias.