De ningún modo. La magnitud de los coeficientes depende directamente de las escalas seleccionadas para las variables, que es una decisión de modelado algo arbitraria.
Para ver esto, considere un modelo de regresión lineal que predice el ancho del pétalo de un iris (en centímetros) dada su longitud del pétalo (en centímetros):
summary(lm(Petal.Width~Petal.Length, data=iris))
# Call:
# lm(formula = Petal.Width ~ Petal.Length, data = iris)
#
# Residuals:
# Min 1Q Median 3Q Max
# -0.56515 -0.12358 -0.01898 0.13288 0.64272
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) -0.363076 0.039762 -9.131 4.7e-16 ***
# Petal.Length 0.415755 0.009582 43.387 < 2e-16 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Residual standard error: 0.2065 on 148 degrees of freedom
# Multiple R-squared: 0.9271, Adjusted R-squared: 0.9266
# F-statistic: 1882 on 1 and 148 DF, p-value: < 2.2e-16
Nuestro modelo alcanza un valor R ^ 2 ajustado de 0.9266 y asigna un valor de coeficiente 0.415755 a la variable Petal.Length.
Sin embargo, la elección de definir Pétalo. Longitud en centímetros fue bastante arbitraria, y podríamos haber definido la variable en metros:
iris$Petal.Length.Meters <- iris$Petal.Length / 100
summary(lm(Petal.Width~Petal.Length.Meters, data=iris))
# Call:
# lm(formula = Petal.Width ~ Petal.Length.Meters, data = iris)
#
# Residuals:
# Min 1Q Median 3Q Max
# -0.56515 -0.12358 -0.01898 0.13288 0.64272
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) -0.36308 0.03976 -9.131 4.7e-16 ***
# Petal.Length.Meters 41.57554 0.95824 43.387 < 2e-16 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Residual standard error: 0.2065 on 148 degrees of freedom
# Multiple R-squared: 0.9271, Adjusted R-squared: 0.9266
# F-statistic: 1882 on 1 and 148 DF, p-value: < 2.2e-16
Por supuesto, esto realmente no afecta el modelo ajustado de ninguna manera: simplemente asignamos un coeficiente 100 veces más grande a Petal.Length.Meters (41.57554) que a Petal.Length (0.415755). Todas las demás propiedades del modelo (R ^ 2 ajustado, estadísticas t, valores p, etc.) son idénticas.
Generalmente, al ajustar modelos lineales regularizados, primero se normalizarán las variables (por ejemplo, para tener una media de 0 y una varianza unitaria) para evitar favorecer algunas variables sobre otras en función de las escalas seleccionadas.
Asumiendo datos normalizados
Incluso si hubiera normalizado todas las variables, las variables con coeficientes más altos podrían no ser tan útiles en las predicciones porque las variables independientes rara vez se establecen (tienen una varianza baja). Como ejemplo, considere un conjunto de datos con la variable dependiente Z y las variables independientes X e Y que toman valores binarios
set.seed(144)
dat <- data.frame(X=rep(c(0, 1), each=50000),
Y=rep(c(0, 1), c(1000, 99000)))
dat$Z <- dat$X + 2*dat$Y + rnorm(100000)
Por construcción, el coeficiente de Y es aproximadamente el doble que el coeficiente de X cuando ambos se usan para predecir Z mediante regresión lineal:
summary(lm(Z~X+Y, data=dat))
# Call:
# lm(formula = Z ~ X + Y, data = dat)
#
# Residuals:
# Min 1Q Median 3Q Max
# -4.4991 -0.6749 -0.0056 0.6723 4.7342
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) -0.094793 0.031598 -3.00 0.0027 **
# X 0.999435 0.006352 157.35 <2e-16 ***
# Y 2.099410 0.031919 65.77 <2e-16 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Residual standard error: 0.9992 on 99997 degrees of freedom
# Multiple R-squared: 0.2394, Adjusted R-squared: 0.2394
# F-statistic: 1.574e+04 on 2 and 99997 DF, p-value: < 2.2e-16
Aún así, X explica más de la varianza en Z que Y (el modelo de regresión lineal que predice Z con X tiene un valor R ^ 2 0.2065, mientras que el modelo de regresión lineal que predice Z con Y tiene un valor R ^ 2 0.0511):
summary(lm(Z~X, data=dat))
# Call:
# lm(formula = Z ~ X, data = dat)
#
# Residuals:
# Min 1Q Median 3Q Max
# -5.2587 -0.6759 0.0038 0.6842 4.7342
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 1.962629 0.004564 430.0 <2e-16 ***
# X 1.041424 0.006455 161.3 <2e-16 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Residual standard error: 1.021 on 99998 degrees of freedom
# Multiple R-squared: 0.2065, Adjusted R-squared: 0.2065
# F-statistic: 2.603e+04 on 1 and 99998 DF, p-value: < 2.2e-16
versus:
summary(lm(Z~Y, data=dat))
# Call:
# lm(formula = Z ~ Y, data = dat)
#
# Residuals:
# Min 1Q Median 3Q Max
# -5.0038 -0.7638 -0.0007 0.7610 5.2288
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) -0.09479 0.03529 -2.686 0.00724 **
# Y 2.60418 0.03547 73.416 < 2e-16 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Residual standard error: 1.116 on 99998 degrees of freedom
# Multiple R-squared: 0.05114, Adjusted R-squared: 0.05113
# F-statistic: 5390 on 1 and 99998 DF, p-value: < 2.2e-16
El caso de la multicolinealidad
Un tercer caso donde los valores de coeficientes grandes pueden ser engañosos sería en el caso de una multicolinealidad significativa entre variables. Como ejemplo, considere un conjunto de datos donde X e Y están altamente correlacionados pero W no está altamente correlacionado con los otros dos; estamos tratando de predecir Z:
set.seed(144)
dat <- data.frame(W=rnorm(100000),
X=rnorm(100000))
dat$Y <- dat$X + rnorm(100000, 0, 0.001)
dat$Z <- 2*dat$W+10*dat$X-11*dat$Y + rnorm(100000)
cor(dat)
# W X Y Z
# W 1.000000e+00 5.191809e-05 5.200434e-05 0.8161636
# X 5.191809e-05 1.000000e+00 9.999995e-01 -0.4079183
# Y 5.200434e-05 9.999995e-01 1.000000e+00 -0.4079246
# Z 8.161636e-01 -4.079183e-01 -4.079246e-01 1.0000000
Estas variables tienen más o menos la misma media (0) y varianza (~ 1), y la regresión lineal asigna valores de coeficientes mucho más altos (en valor absoluto) a X (aproximadamente 15) e Y (aproximadamente -16) que a W ( aproximadamente 2):
summary(lm(Z~W+X+Y, data=dat))
# Call:
# lm(formula = Z ~ W + X + Y, data = dat)
#
# Residuals:
# Min 1Q Median 3Q Max
# -4.1886 -0.6760 0.0026 0.6679 4.2232
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 1.831e-04 3.170e-03 0.058 0.954
# W 2.001e+00 3.172e-03 630.811 < 2e-16 ***
# X 1.509e+01 3.177e+00 4.748 2.05e-06 ***
# Y -1.609e+01 3.177e+00 -5.063 4.13e-07 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Residual standard error: 1.002 on 99996 degrees of freedom
# Multiple R-squared: 0.8326, Adjusted R-squared: 0.8326
# F-statistic: 1.658e+05 on 3 and 99996 DF, p-value: < 2.2e-16
Aún así, entre las tres variables en el modelo W está la más importante: si elimina W del modelo completo, el R ^ 2 cae de 0.833 a 0.166, mientras que si cae X o Y, el R ^ 2 prácticamente no cambia.