Comprender la descomposición QR


15

Tengo un ejemplo trabajado (en R), que estoy tratando de entender más. Estoy usando Limma para crear un modelo lineal y estoy tratando de entender lo que sucede paso a paso en los cálculos de cambio de pliegue. Principalmente estoy tratando de averiguar qué sucede para calcular los coeficientes. Por lo que puedo entender, la descomposición QR se usa para obtener los coeficientes, por lo que esencialmente estoy buscando una explicación o una forma de ver paso a paso las ecuaciones que se están calculando, o el código fuente de qr () en R para rastrearlo yo mismo.

Usando los siguientes datos:

expression_data <- c(1.27135202935009, 1.41816160331787, 1.2572772420417, 1.70943398046296, 1.30290218641586, 0.632660015122616, 1.73084258791384, 0.863826352944684, 0.62481665344628, 0.356064235030147, 1.31542028558644, 0.30549909383238, 0.464963176430548, 0.132181421105667, -0.284799809563931, 0.216198538884642, -0.0841133304341238, -0.00184472290008803, -0.0924271878885008, -0.340291804468472, -0.236829711453303, 0.0529690806587626, 0.16321956624511, -0.310513510587778, -0.12970035111176, -0.126398635780533, 0.152550803185228, -0.458542514769473, 0.00243517688116406, -0.0190192219685527, 0.199329876859774, 0.0493831375210439, -0.30903829000185, -0.289604319193543, -0.110019942085281, -0.220289950537685, 0.0680403723818882, -0.210977291862137, 0.253649629045288, 0.0740109953273042, 0.115109148186167, 0.187043445057404, 0.705155251555554, 0.105479342752451, 0.344672919872447, 0.303316487542805, 0.332595721664644, 0.0512213943473417, 0.440756755046719, 0.091642538588249, 0.477236022595909, 0.109140019847968, 0.685001267317616, 0.183154080053337, 0.314190891668279, -0.123285017407119, 0.603094973500324, 1.53723917249845, 0.180518835745199, 1.5520102749957, -0.339656677699664, 0.888791974821514, 0.321402618155527, 1.31133008668306, 0.287587853884556, -0.513896569786498, 1.01400498573403, -0.145552182640197, -0.0466811491949621, 1.34418631328095, -0.188666887863983, 0.920227741574566, -0.0182196762358299, 1.18398082848213, 0.0680539755381465, 0.389472802053599, 1.14920099633956, 1.35363045061024, -0.0400907708395635, 1.14405154287124, 0.365672853509181, -0.0742688460368051, 1.60927415300638, -0.0312210890874907, -0.302097025523754, 0.214897201115632, 2.029775196118, 1.46210810601113, -0.126836819148653, -0.0799005522761045, 0.958505775644153, -0.209758749029421, 0.273568395649965, 0.488150388217536, -0.230312627718208, -0.0115780974342431, 0.351708198671371, 0.11803520077305, -0.201488605868396, 0.0814169684941098, 1.32266103732873, 1.9077004570343, 1.34748531668521, 1.37847539147601, 1.85761827653095, 1.11327229058024, 1.21377936983249, 1.167867701785, 1.3119314966728, 1.01502530573911, 1.22109375841952, 1.23026951795161, 1.30638557237133, 1.02569437924906, 0.812852833149196) 

treatment <- c('A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'B', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'A', 'B', 'A', 'C', 'A', 'C', 'A', 'B', 'C', 'B', 'C', 'C', 'A', 'C', 'A', 'B', 'A', 'C', 'B', 'B', 'A', 'C', 'A', 'C', 'C', 'A', 'C', 'B', 'C', 'A', 'A', 'B', 'C', 'A', 'C', 'B', 'B', 'C', 'C', 'B', 'B', 'C', 'C', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A')

variation <- c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3)

... y el siguiente diseño de modelo

design               <- model.matrix(~0 + factor(treatment,
                                                 levels=unique(treatment)) +
                                          factor(variation))
colnames(design)     <- c(unique(treatment),
                          paste0("b",
                                 unique(variation)[-1]))
#expression_data consists of more than the data given. The data given is just one row from the object
fit                  <- lmFit((expression_data), design)

cont_mat             <- makeContrasts(B-A,
                                      levels=design)
fit2                 <- contrasts.fit(fit,
                                      contrasts=cont_mat)
fit2                 <- eBayes(fit2)

Me da un cambio de pliegue de -0.8709646.

Obtener los coeficientes se puede hacer a través de:

qr.solve(design, expression_data)

Entonces es un caso simple de BA para obtener el cambio de pliegue.

Ahora, lo que me deja perplejo es cómo qr.solvefunciona realmente, llama a la qrfunción, pero parece que no puedo encontrar la fuente para eso.

¿Alguien tiene una buena explicación de la descomposición qr, o una forma de rastrear exactamente lo que está sucediendo para derivar los coeficientes?

¡Gracias por cualquier ayuda!



1
Aquí está la fuente: github.com/wch/r-source/blob/… Estás a un nivel de fortran.
Matthew Drury

2
Mi respuesta aquí también puede ser interesante para usted: stats.stackexchange.com/questions/154485/…
Matthew Drury

Respuestas:


24

La idea de la descomposición QR como un procedimiento para obtener estimaciones de OLS ya se explica en la publicación vinculada por @MatthewDrury.

El código fuente de la función qrestá escrito en Fortran y puede ser difícil de seguir. Aquí muestro una implementación mínima que reproduce los resultados principales de un modelo ajustado por OLS. Esperemos que los pasos sean más fáciles de seguir.

XQRX=QRXXβ^=Xy

RQQRβ^=RQy.

R-1QQ

(1)Rβ^=Qy.

Rβ^

QR

RYQy

QR.regression <- function(y, X)
{
  nr <- length(y)
  nc <- NCOL(X)

  # Householder transformations
  for (j in seq_len(nc))
  {
    id <- seq.int(j, nr)
    sigma <- sum(X[id,j]^2)
    s <- sqrt(sigma)
    diag_ej <- X[j,j]
    gamma <- 1.0 / (sigma + abs(s * diag_ej))
    kappa <- if (diag_ej < 0) s else -s
    X[j,j] <- X[j,j] - kappa
    if (j < nc)
    for (k in seq.int(j+1, nc))
    {
      yPrime <- sum(X[id,j] * X[id,k]) * gamma
      X[id,k] <- X[id,k] - X[id,j] * yPrime
    }

    yPrime <- sum(X[id,j] * y[id]) * gamma
    y[id] <- y[id] - X[id,j] * yPrime

    X[j,j] <- kappa

  } # end Householder

  # residual sum of squares
  rss <- sum(y[seq.int(nc+1, nr)]^2)

  # Backsolve
  beta <- rep(NA, nc)
  for (j in seq.int(nc, 1))
  {
    beta[j] <- y[j]
    if (j < nc)
    for (i in seq.int(j+1, nc))
      beta[j] <- beta[j] - X[j,i] * beta[i]
    beta[j] <- beta[j] / X[j,j]
  }

  # set zeros in the lower triangular side of X (which stores) 
  # not really necessary, this is just to return R for illustration
  for (i in seq_len(ncol(X)))
    X[seq.int(i+1, nr),i] <- 0

  list(R=X[1:nc,1:nc], y=y, beta=beta, rss=rss)
}

Podemos comprobar que lmse obtienen las mismas estimaciones que las obtenidas.

# benchmark results
fit <- lm(expression_data ~ 0+design)
# OLS by QR decomposition
y <- expression_data
X <- design
res <- QR.regression(y, X)
res$beta
# [1]  1.43235881  0.56139421  0.07744044 -0.15611038 -0.15021796    
all.equal(res$beta, coef(fit), check.attributes=FALSE)
# [1] TRUE
all.equal(res$rss, sum(residuals(fit)^2))
# [1] TRUE

También podemos obtener la matriz Q

Q <- X %*% solve(res$R)
round(crossprod(Q), 3)
#   1 2 3 4 5
# 1 1 0 0 0 0
# 2 0 1 0 0 0
# 3 0 0 1 0 0
# 4 0 0 0 1 0
# 5 0 0 0 0 1

Los residuos se pueden obtener como y - X %*% res$beta.


Referencias

DSG Pollock (1999) Un manual de análisis de series temporales, procesamiento de señales y dinámica. , Academic Press.


Un punto menor: creo que el código en su segundo fragmento debería tener QR.regressioncomo función la llamada en lugar de QR.Householder. Aparte de eso, no puedo agradecerles lo suficiente por una explicación tan perspicaz.
A_Skelton73

Cambié el nombre de la función pero olvidé actualizar la llamada, ¡gracias! Me alegra ver que fue útil.
javlacalle
Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.