Recordemos que muchos textos introductorios definen
Sxy=∑i=1n(xi−x¯)(yi−y¯)
yxSxx=∑ni=1(xi−x¯)2Syy=∑ni=1(yi−y¯)2
ryxbxyd
rβ^y on xβ^x on y=SxySxxSyy−−−−−−√=SxySxx=SxySyy(1)(2)(3)
(2)(3)(1)
β^y on x⋅β^x on y=S2xySxxSyy=r2
(1)(2)(3)n(n−1)(1)
rβ^y on xβ^x on y=Corrˆ(X,Y)=Covˆ(X,Y)SD(X)ˆSD(Y)ˆ=Covˆ(X,Y)Var(X)ˆ=Covˆ(X,Y)Var(Y)ˆ(4)(5)(6)
(5)(6)
β^y on xβ^x on y=Covˆ(X,Y)2Var(X)ˆVar(Y)ˆ=(Covˆ(X,Y)SD(X)ˆSD(Y)ˆ)2=r2
(4)
Covˆ(X,Y)=r⋅SD(X)ˆSD(Y)ˆ(7)
(7)(5)(6)β^y on x=rSDˆ(y)SDˆ(x)β^x on y=rSDˆ(x)SDˆ(y)r2
r=bd−−√=β^y on xβ^x on y−−−−−−−−−−√
yxxy
r=sgn(β^y on x)β^y on xβ^x on y−−−−−−−−−−√
sgn+1−1