Deseo crear un dato de supervivencia de juguetes (tiempo hasta el evento) que esté correctamente censurado y siga alguna distribución con riesgos proporcionales y un riesgo de referencia constante.
Creé los datos de la siguiente manera, pero no puedo obtener las razones de riesgo estimadas que están cerca de los valores verdaderos después de ajustar un modelo de riesgos proporcionales de Cox a los datos simulados.
¿Qué hice mal?
Códigos R:
library(survival)
#set parameters
set.seed(1234)
n = 40000 #sample size
#functional relationship
lambda=0.000020 #constant baseline hazard 2 per 100000 per 1 unit time
b_haz <-function(t) #baseline hazard
{
lambda #constant hazard wrt time
}
x = cbind(hba1c=rnorm(n,2,.5)-2,age=rnorm(n,40,5)-40,duration=rnorm(n,10,2)-10)
B = c(1.1,1.2,1.3) # hazard ratios (model coefficients)
hist(x %*% B) #distribution of scores
haz <-function(t) #hazard function
{
b_haz(t) * exp(x %*% B)
}
c_hf <-function(t) #cumulative hazards function
{
exp(x %*% B) * lambda * t
}
S <- function(t) #survival function
{
exp(-c_hf(t))
}
S(.005)
S(1)
S(5)
#simulate censoring
time = rnorm(n,10,2)
S_prob = S(time)
#simulate events
event = ifelse(runif(1)>S_prob,1,0)
#model fit
km = survfit(Surv(time,event)~1,data=data.frame(x))
plot(km) #kaplan-meier plot
#Cox PH model
fit = coxph(Surv(time,event)~ hba1c+age+duration, data=data.frame(x))
summary(fit)
cox.zph(fit)
Resultados:
Call:
coxph(formula = Surv(time, event) ~ hba1c + age + duration, data = data.frame(x))
n= 40000, number of events= 3043
coef exp(coef) se(coef) z Pr(>|z|)
hba1c 0.236479 1.266780 0.035612 6.64 3.13e-11 ***
age 0.351304 1.420919 0.003792 92.63 < 2e-16 ***
duration 0.356629 1.428506 0.008952 39.84 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
exp(coef) exp(-coef) lower .95 upper .95
hba1c 1.267 0.7894 1.181 1.358
age 1.421 0.7038 1.410 1.432
duration 1.429 0.7000 1.404 1.454
Concordance= 0.964 (se = 0.006 )
Rsquare= 0.239 (max possible= 0.767 )
Likelihood ratio test= 10926 on 3 df, p=0
Wald test = 10568 on 3 df, p=0
Score (logrank) test = 11041 on 3 df, p=0
pero los valores verdaderos se establecen como
B = c(1.1,1.2,1.3) # hazard ratios (model coefficients)