Tengo el siguiente conjunto de datos simple con dos variables continuas; es decir:
d = data.frame(x=runif(100,0,100),y = runif(100,0,100))
plot(d$x,d$y)
abline(lm(y~x,d), col="red")
cor(d$x,d$y) # = 0.2135273
Necesito reorganizar los datos para que la correlación entre las variables sea ~ 0.6. Necesito mantener constantes las medias y otras estadísticas descriptivas (sd, min, max, etc.) de ambas variables.
Sé que es posible hacer casi cualquier correlación con los datos dados, es decir:
d2 = with(d,data.frame(x=sort(x),y=sort(y)))
plot(d2$x,d2$y)
abline(lm(y~x,d2), col="red")
cor(d2$x,d2$y) # i.e. 0.9965585
Si trato de usar la sample
función para esta tarea:
cor.results = c()
for(i in 1:1000){
set.seed(i)
d3 = with(d,data.frame(x=sample(x),y=sample(y)))
cor.results = c(cor.results,cor(d3$x,d3$y))
}
Obtengo una amplia gama de correlaciones:
> summary(cor.results)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.281600 -0.038330 -0.002498 -0.001506 0.034380 0.288800
pero este rango depende del número de filas en el marco de datos y disminuye con el aumento de tamaño.
> d = data.frame(x=runif(1000,0,100),y = runif(1000,0,100))
> cor.results = c()
> for(i in 1:1000){
+ set.seed(i)
+ d3 = with(d,data.frame(x=sample(x),y=sample(y)))
+ cor.results = c(cor.results,cor(d3$x,d3$y))
+ }
> summary(cor.results)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.1030000 -0.0231300 -0.0005248 -0.0005547 0.0207000 0.1095000
Mi pregunta es:
¿Cómo reorganizar dicho conjunto de datos para obtener una correlación dada (es decir, 0.7)? (También será bueno si el método eliminará la dependencia del tamaño del conjunto de datos)