El método Monte Carlo fue el primer enfoque para utilizar la simulación por computadora para problemas estadísticos. Fue desarrollado por el equipo John von Neumann, Stanisław Ulam y Nicholas Metropolis de los laboratorios de Los Alamos que estaban trabajando en el proyecto de Manhattan durante la Segunda Guerra Mundial. Fue descrito por primera vez en 1949 por Metropolis & Ulam , y fue la primera vez que el nombre apareció impreso. Fue posible porque los científicos que lo descubrieron también pudieron usar una de las primeras computadoras en las que estaban trabajando. En su trabajo, utilizaron los métodos de Monte Carlo para simular problemas físicos, y la idea era que se pudiera simular un problema complicado al muestrear algunos ejemplos de este proceso. Hay varios artículos interesantes sobre la historia de Montecarlo, por ejemploMetrópolis o algo más reciente, por ejemplo, de Robert y Casella .
Entonces "Monte Carlo" fue el nombre del primer método descrito con el propósito de simulación por computadora para resolver problemas estadísticos. Luego, el nombre se convirtió en un nombre general para toda una familia de métodos de simulación y se usa comúnmente de esta manera.
Existen métodos de simulación que no se consideran Monte Carlo , sin embargo, aunque Monte Carlo fue el primer uso de la simulación por computadora, es común que la "simulación por computadora" y "Monte Carlo" se usen indistintamente.
Hay diferentes definiciones de lo que es "simulación", es decir
Diccionario Merriam-Webster :
3 a: la representación imitativa del funcionamiento de un sistema o proceso mediante el funcionamiento de otro b: examen de un problema a menudo no sujeto a experimentación directa mediante un dispositivo de simulación
Diccionario Cambridge :
hacer o hacer algo que se comporte o parezca algo real pero que no sea real
Wikipedia :
imitación de la operación de un proceso o sistema del mundo real a lo largo del tiempo
Lo que la simulación necesita para funcionar es la capacidad de imitar algún sistema o proceso. Esto no necesita ninguna aleatoriedad involucrada (como con Monte Carlo), sin embargo, si se prueban todas las posibilidades, entonces el procedimiento es más bien una búsqueda exhaustiva o, en general, un problema de optimización . Si el elemento aleatorio está involucrado y se usa una computadora para ejecutar una simulación de algún modelo, entonces esta simulación se asemeja al espíritu del método Monte Carlo inicial (por ejemplo, Metropolis y Ulam, 1949). El elemento aleatorio como parte crucial de la simulación es mencionado, por ejemplo, por Ross (2006, Simulación. Elsevier). Sin embargo, la respuesta a la pregunta depende en gran medida de la definición de simulación que asuma. Por ejemplo, si supone que los algoritmos deterministas que utilizan la optimización o la búsqueda exhaustiva son, de hecho, simulaciones, entonces debemos considerar una gran variedad de algoritmos para ser simulaciones y esto hace que la definición de simulación per se sea muy borrosa.
Literalmente, cada procedimiento estadístico emplea algún modelo o aproximación de la realidad, que se "prueba" y evalúa. Esto es consistente con las definiciones de simulación del diccionario. Sin embargo, no consideramos que todas las estadísticas estén basadas en simulaciones. La pregunta y la discusión parecen surgir de la falta de la definición precisa de "simulación". Monte Carlo parece ser un ejemplo arquetípico (y primer) de simulación, sin embargo, si consideramos una definición muy general de simulación, muchos métodos que no son de Monte Carlo caen en la definición. Por lo tanto, existen simulaciones que no son de Monte Carlo, pero todos los métodos claramente basados en la simulación se asemejan al espíritu de Monte Carlo, se relacionan con él de alguna manera o se inspiraron en él. Esa es la razón por la cual "Monte Carlo" se usa a menudo como sinónimo de "simulación".