¿Qué técnicas de aproximación existen para calcular la raíz cuadrada?


12

Tengo recursos muy limitados ya que estoy trabajando con un microcontrolador. ¿Existe una expansión de la serie taylor, una tabla de búsqueda común o un enfoque recursivo?

Prefiero hacer algo sin usar math.h sqrt ()

http://www.cplusplus.com/reference/cmath/sqrt/


55
Echa un vistazo a este enlace: codeproject.com/Articles/69941/…
Matt L.

1
Excepto el hecho de que es más una pregunta de programación, ¿por qué no darle una respuesta, Matt?
jojek

¿Entrada de punto flotante o de punto fijo? Para el punto fijo, un método iterativo puede ser preferible, pero no me molestaré en explicarlo a menos que realmente lo desee.
Oscar

@Oscar, me encantaría aprender el método de punto fijo ya que trato de no requerir el uso de flotadores en mi firmware :).
tarabyte

Respuestas:


13

si desea una expansión de la serie de potencia optimizada barata y sucia (los coeficientes de la serie de Taylor convergen lentamente) para sqrt()y un montón de otros trancendentals, tengo algún código de hace mucho tiempo. Solía ​​vender este código, pero nadie me lo ha pagado por casi una década. así que creo que lo lanzaré para consumo público. Este archivo en particular era para una aplicación donde el procesador tenía coma flotante (precisión única IEEE-754) y tenían un compilador C y un sistema de desarrollo, pero no teníantener (o no querían vincular) el stdlib que habría tenido las funciones matemáticas estándar. no necesitaban una precisión perfecta, pero querían que las cosas fueran rápidas. puede hacer ingeniería inversa del código con bastante facilidad para ver cuáles son los coeficientes de la serie de potencia y escribir su propio código. este código asume IEEE-754 y enmascara los bits para mantisa y exponente.

parece que el "marcado de código" que tiene SE no es amigable con los caracteres angulares (ya sabes ">" o "<"), por lo que probablemente tendrás que presionar "editar" para verlo todo.

//
//    FILE: __functions.h
//
//    fast and approximate transcendental functions
//
//    copyright (c) 2004  Robert Bristow-Johnson
//
//    rbj@audioimagination.com
//


#ifndef __FUNCTIONS_H
#define __FUNCTIONS_H

#define TINY 1.0e-8
#define HUGE 1.0e8

#define PI              (3.1415926535897932384626433832795028841972)        /* pi */
#define ONE_OVER_PI     (0.3183098861837906661338147750939)
#define TWOPI           (6.2831853071795864769252867665590057683943)        /* 2*pi */
#define ONE_OVER_TWOPI  (0.15915494309189535682609381638)
#define PI_2            (1.5707963267948966192313216916397514420986)        /* pi/2 */
#define TWO_OVER_PI     (0.636619772367581332267629550188)
#define LN2             (0.6931471805599453094172321214581765680755)        /* ln(2) */
#define ONE_OVER_LN2    (1.44269504088896333066907387547)
#define LN10            (2.3025850929940456840179914546843642076011)        /* ln(10) */
#define ONE_OVER_LN10   (0.43429448190325177635683940025)
#define ROOT2           (1.4142135623730950488016887242096980785697)        /* sqrt(2) */
#define ONE_OVER_ROOT2  (0.707106781186547438494264988549)

#define DB_LOG2_ENERGY          (3.01029995663981154631945610163)           /* dB = DB_LOG2_ENERGY*__log2(energy) */
#define DB_LOG2_AMPL            (6.02059991327962309263891220326)           /* dB = DB_LOG2_AMPL*__log2(amplitude) */
#define ONE_OVER_DB_LOG2_AMPL   (0.16609640474436811218256075335)           /* amplitude = __exp2(ONE_OVER_DB_LOG2_AMPL*dB) */

#define LONG_OFFSET     4096L
#define FLOAT_OFFSET    4096.0



float   __sqrt(float x);

float   __log2(float x);
float   __exp2(float x);

float   __log(float x);
float   __exp(float x);

float   __pow(float x, float y);

float   __sin_pi(float x);
float   __cos_pi(float x);

float   __sin(float x);
float   __cos(float x);
float   __tan(float x);

float   __atan(float x);
float   __asin(float x);
float   __acos(float x);

float   __arg(float Imag, float Real);

float   __poly(float *a, int order, float x);
float   __map(float *f, float scaler, float x);
float   __discreteMap(float *f, float scaler, float x);

unsigned long __random();

#endif




//
//    FILE: __functions.c
//
//    fast and approximate transcendental functions
//
//    copyright (c) 2004  Robert Bristow-Johnson
//
//    rbj@audioimagination.com
//

#define STD_MATH_LIB 0

#include "__functions.h"

#if STD_MATH_LIB
#include "math.h"   // angle brackets don't work with SE markup
#endif




float   __sqrt(register float x)
    {
#if STD_MATH_LIB
    return (float) sqrt((double)x);
#else
    if (x > 5.877471754e-39)
        {
        register float accumulator, xPower;
        register long intPart;
        register union {float f; long i;} xBits;

        xBits.f = x;

        intPart = ((xBits.i)>>23);                  /* get biased exponent */
        intPart -= 127;                             /* unbias it */

        x = (float)(xBits.i & 0x007FFFFF);          /* mask off exponent leaving 0x800000*(mantissa - 1) */
        x *= 1.192092895507812e-07;                 /* divide by 0x800000 */

        accumulator =  1.0 + 0.49959804148061*x;
        xPower = x*x;
        accumulator += -0.12047308243453*xPower;
        xPower *= x;
        accumulator += 0.04585425015501*xPower;
        xPower *= x;
        accumulator += -0.01076564682800*xPower;

        if (intPart & 0x00000001)
            {
            accumulator *= ROOT2;                   /* an odd input exponent means an extra sqrt(2) in the output */
            }

        xBits.i = intPart >> 1;                     /* divide exponent by 2, lose LSB */
        xBits.i += 127;                             /* rebias exponent */
        xBits.i <<= 23;                             /* move biased exponent into exponent bits */

        return accumulator * xBits.f;
        }
     else
        {
        return 0.0;
        }
#endif
    }




float   __log2(register float x)
    {
#if STD_MATH_LIB
    return (float) (ONE_OVER_LN2*log((double)x));
#else
    if (x > 5.877471754e-39)
        {
        register float accumulator, xPower;
        register long intPart;

        register union {float f; long i;} xBits;

        xBits.f = x;

        intPart = ((xBits.i)>>23);                  /* get biased exponent */
        intPart -= 127;                             /* unbias it */

        x = (float)(xBits.i & 0x007FFFFF);          /* mask off exponent leaving 0x800000*(mantissa - 1) */
        x *= 1.192092895507812e-07;                 /* divide by 0x800000 */

        accumulator = 1.44254494359510*x;
        xPower = x*x;
        accumulator += -0.71814525675041*xPower;
        xPower *= x;
        accumulator += 0.45754919692582*xPower;
        xPower *= x;
        accumulator += -0.27790534462866*xPower;
        xPower *= x;
        accumulator += 0.12179791068782*xPower;
        xPower *= x;
        accumulator += -0.02584144982967*xPower;

        return accumulator + (float)intPart;
        }
     else
        {
        return -HUGE;
        }
#endif
    }


float   __exp2(register float x)
    {
#if STD_MATH_LIB
    return (float) exp(LN2*(double)x);
#else
    if (x >= -127.0)
        {
        register float accumulator, xPower;
        register union {float f; long i;} xBits;

        xBits.i = (long)(x + FLOAT_OFFSET) - LONG_OFFSET;       /* integer part */
        x -= (float)(xBits.i);                                  /* fractional part */

        accumulator = 1.0 + 0.69303212081966*x;
        xPower = x*x;
        accumulator += 0.24137976293709*xPower;
        xPower *= x;
        accumulator += 0.05203236900844*xPower;
        xPower *= x;
        accumulator += 0.01355574723481*xPower;

        xBits.i += 127;                                         /* bias integer part */
        xBits.i <<= 23;                                         /* move biased int part into exponent bits */

        return accumulator * xBits.f;
        }
     else
        {
        return 0.0;
        }
#endif
    }


float   __log(register float x)
    {
#if STD_MATH_LIB
    return (float) log((double)x);
#else
    return LN2*__log2(x);
#endif
    }

float   __exp(register float x)
    {
#if STD_MATH_LIB
    return (float) exp((double)x);
#else
    return __exp2(ONE_OVER_LN2*x);
#endif
    }

float   __pow(float x, float y)
    {
#if STD_MATH_LIB
    return (float) pow((double)x, (double)y);
#else
    return __exp2(y*__log2(x));
#endif
    }




float   __sin_pi(register float x)
    {
#if STD_MATH_LIB
    return (float) sin(PI*(double)x);
#else
    register float accumulator, xPower, xSquared;

    register long evenIntPart = ((long)(0.5*x + 1024.5) - 1024)<<1;
    x -= (float)evenIntPart;

    xSquared = x*x;
    accumulator = 3.14159265358979*x;
    xPower = xSquared*x;
    accumulator += -5.16731953364340*xPower;
    xPower *= xSquared;
    accumulator += 2.54620566822659*xPower;
    xPower *= xSquared;
    accumulator += -0.586027023087261*xPower;
    xPower *= xSquared;
    accumulator += 0.06554823491427*xPower;

    return accumulator;
#endif
    }


float   __cos_pi(register float x)
    {
#if STD_MATH_LIB
    return (float) cos(PI*(double)x);
#else
    register float accumulator, xPower, xSquared;

    register long evenIntPart = ((long)(0.5*x + 1024.5) - 1024)<<1;
    x -= (float)evenIntPart;

    xSquared = x*x;
    accumulator = 1.57079632679490*x;                       /* series for sin(PI/2*x) */
    xPower = xSquared*x;
    accumulator += -0.64596406188166*xPower;
    xPower *= xSquared;
    accumulator += 0.07969158490912*xPower;
    xPower *= xSquared;
    accumulator += -0.00467687997706*xPower;
    xPower *= xSquared;
    accumulator += 0.00015303015470*xPower;

    return 1.0 - 2.0*accumulator*accumulator;               /* cos(w) = 1 - 2*(sin(w/2))^2 */
#endif
    }


float   __sin(register float x)
    {
#if STD_MATH_LIB
    return (float) sin((double)x);
#else
    x *= ONE_OVER_PI;
    return __sin_pi(x);
#endif
    }

float   __cos(register float x)
    {
#if STD_MATH_LIB
    return (float) cos((double)x);
#else
    x *= ONE_OVER_PI;
    return __cos_pi(x);
#endif
    }

float   __tan(register float x)
    {
#if STD_MATH_LIB
    return (float) tan((double)x);
#else
    x *= ONE_OVER_PI;
    return __sin_pi(x)/__cos_pi(x);
#endif
    }




float   __atan(register float x)
    {
#if STD_MATH_LIB
    return (float) atan((double)x);
#else
    register float accumulator, xPower, xSquared, offset;

    offset = 0.0;

    if (x < -1.0)
        {
        offset = -PI_2;
        x = -1.0/x;
        }
     else if (x > 1.0)
        {
        offset = PI_2;
        x = -1.0/x;
        }
    xSquared = x*x;
    accumulator = 1.0;
    xPower = xSquared;
    accumulator += 0.33288950512027*xPower;
    xPower *= xSquared;
    accumulator += -0.08467922817644*xPower;
    xPower *= xSquared;
    accumulator += 0.03252232640125*xPower;
    xPower *= xSquared;
    accumulator += -0.00749305860992*xPower;

    return offset + x/accumulator;
#endif
    }


float   __asin(register float x)
    {
#if STD_MATH_LIB
    return (float) asin((double)x);
#else
    return __atan(x/__sqrt(1.0 - x*x));
#endif
    }

float   __acos(register float x)
    {
#if STD_MATH_LIB
    return (float) acos((double)x);
#else
    return __atan(__sqrt(1.0 - x*x)/x);
#endif
    }


float   __arg(float Imag, float Real)
    {
#if STD_MATH_LIB
    return (float) atan2((double)Imag, (double)Real);
#else
    register float accumulator, xPower, xSquared, offset, x;

    if (Imag > 0.0)
        {
        if (Imag <= -Real)
            {
            offset = PI;
            x = Imag/Real;
            }
         else if (Imag > Real)
            {
            offset = PI_2;
            x = -Real/Imag;
            }
         else
            {
            offset = 0.0;
            x = Imag/Real;
            }
        }
     else
        {
        if (Imag >= Real)
            {
            offset = -PI;
            x = Imag/Real;
            }
         else if (Imag < -Real)
            {
            offset = -PI_2;
            x = -Real/Imag;
            }
         else
            {
            offset = 0.0;
            x = Imag/Real;
            }
        }

    xSquared = x*x;
    accumulator = 1.0;
    xPower = xSquared;
    accumulator += 0.33288950512027*xPower;
    xPower *= xSquared;
    accumulator += -0.08467922817644*xPower;
    xPower *= xSquared;
    accumulator += 0.03252232640125*xPower;
    xPower *= xSquared;
    accumulator += -0.00749305860992*xPower;

    return offset + x/accumulator;
#endif
    }




float   __poly(float *a, int order, float x)
    {
    register float accumulator = 0.0, xPower;
    register int n;

    accumulator = a[0];
    xPower = x;
    for (n=1; n<=order; n++)
        {
        accumulator += a[n]*xPower;
        xPower *= x;
        }

    return accumulator;
    }


float   __map(float *f, float scaler, float x)
    {
    register long i;

    x *= scaler;

    i = (long)(x + FLOAT_OFFSET) - LONG_OFFSET;         /* round down without floor() */

    return f[i] + (f[i+1] - f[i])*(x - (float)i);       /* linear interpolate between points */
    }


float   __discreteMap(float *f, float scaler, float x)
    {
    register long i;

    x *= scaler;

    i = (long)(x + (FLOAT_OFFSET+0.5)) - LONG_OFFSET;   /* round to nearest */

    return f[i];
    }


unsigned long __random()
    {
    static unsigned long seed0 = 0x5B7A2775, seed1 = 0x80C7169F;

    seed0 += seed1;
    seed1 += seed0;

    return seed1;
    }

¿Alguien sabe cómo funciona este marcado de código con SE? si presiona "editar" puede ver el código que pretendía, pero lo que vemos aquí tiene muchas líneas de código omitidas, y no solo al final del archivo. Estoy usando la referencia de marcado a la que nos dirige la ayuda de marcado SE . Si alguien puede resolverlo, edite la respuesta y díganos lo que hizo.
robert bristow-johnson

No sé qué es eso @Royi.
Robert Bristow-Johnson


@Royi, está bien para mí que este código se publique en esa ubicación de pastebin. Si lo desea, también puede publicar este código que convierte binario a prueba decimal y texto decimal a binario . se usó en el mismo proyecto incrustado donde no queríamos el contenido stdlib.
Robert Bristow-Johnson


6

f(x)x0

x1=x0f(x0)f(x0)

x1(n+1)n

xn+1=xnf(xn)f(xn)

aax=aax2a=0af(x)=x2af(x)=2x

xn+1=xnxn2a2xn
xn+1=12(xn+axn)

a1x=aa1x2a=01aa

xn+1=xnf(xn)f(xn)
xn+1=xn1(xn)2a2(xn)3
xn+1=12(3xn(xn)3a)

Sin embargo, hay una advertencia que debemos tener en cuenta al mirar la ecuación anterior. Para las raíces cuadradas, la solución debe ser positiva y, por lo tanto, para que las iteraciones (y el resultado) sean positivas, se debe cumplir la siguiente condición:

3xn(xn)3a>0
3xn>(xn)3a
(xn)2a<3

Por lo tanto:

(x0)2a<3

x0x0x0106

Como su etiqueta está buscando un algoritmo C, escribamos uno muy rápidamente:

#include <stdio.h> // For printf
#include <math.h> // For fabs
void main() 
{
   float a = 5.0; // Number we want to take the square root of
   float x = 1.0; // Initial guess
   float xprev; // Root for previous iteration
   int count; // Counter for iterations

   // Find a better initial guess
   // Half at each step until condition is satisfied
   while (x*x*a >= 3.0)
       x *= 0.5;

   printf("Initial guess: %f\n", x);

   count = 1; 
   do { 
       xprev = x; // Save for previous iteration
       printf("Iteration #%d: %f\n", count++, x);                   
       x = 0.5*(3*xprev - (xprev*xprev*xprev)*a); // Find square root of the reciprocal
   } while (fabs(x - xprev) > 1e-6); 

   x *= a; // Actual answer - Multiply by a
   printf("Square root is: %f\n", x);
   printf("Done!");
}

Esta es una implementación bastante básica del método de Newton. Tenga en cuenta que sigo disminuyendo la suposición inicial a la mitad hasta que se cumpla la condición de la que hablamos anteriormente. También estoy tratando de encontrar la raíz cuadrada de 5. Sabemos que esto es aproximadamente igual a 2.236 más o menos. El uso del código anterior da el siguiente resultado:

Initial guess: 0.500000
Iteration #1: 0.500000
Iteration #2: 0.437500
Iteration #3: 0.446899
Iteration #4: 0.447213
Square root is: 2.236068
Done!

a

Initial guess: 0.015625
Iteration #1: 0.015625
Iteration #2: 0.004601
Iteration #3: 0.006420
Iteration #4: 0.008323
Iteration #5: 0.009638
Iteration #6: 0.010036
Iteration #7: 0.010062
Square root is: 99.378067
Done!

Como puede ver, lo único que es diferente es cuántas iteraciones se requieren para calcular la raíz cuadrada. Cuanto mayor sea el número de lo que desea calcular, más iteraciones tomará.

Sé que este método ya se sugirió en una publicación anterior, ¡pero pensé que derivaría el método y proporcionaría un código!


2
f(x)=1xxx

3
es solo que, para las personas que codifican DSP y algunos otros chips, esa división es particularmente costosa, mientras que estos chips pueden multiplicar números tan rápido como pueden mover los números.
robert bristow-johnson

1
@ robertbristow-johnson - y otro excelente punto. Recuerdo cuando trabajaba con el Motorola 6811 que la multiplicación tomó algunos ciclos, mientras que la división tomó varios cientos. No fue lindo.
rayryeng - Restablecer Monica

3
ahh, el buen viejo 68HC11. tenía algunas cosas del 6809 (como una multiplicación rápida) pero más de un microcontrolador.
robert bristow-johnson

1
@ robertbristow-johnson - Sí señor el 68HC11 :). Lo usé para crear un sistema de generación de señales biomédicas que creara señales cardíacas artificiales para calibrar equipos médicos y capacitar a estudiantes de medicina. Ha pasado mucho tiempo, pero muy buenos recuerdos!
rayryeng - Restablece a Mónica el

6

x

Sí, una serie de potencia puede aproximar de manera rápida y eficiente la función de raíz cuadrada, y solo en un dominio limitado. cuanto más amplio sea el dominio, más términos necesitará en su serie de potencia para mantener el error lo suficientemente bajo.

1x2

x  1+a1(x1)+a2(x1)2+a3(x1)3+a4(x1)4=1+(x1)(a1+(x1)(a2+(x1)(a3+(x1)a4)))

dónde

a1

a2

a3

a4

x=1x=2

2nn2

si es punto flotante, debe separar el exponente y la mantisa como lo hace mi código C en la otra respuesta.



Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.