Tengo recursos muy limitados ya que estoy trabajando con un microcontrolador. ¿Existe una expansión de la serie taylor, una tabla de búsqueda común o un enfoque recursivo?
Prefiero hacer algo sin usar math.h sqrt ()
Tengo recursos muy limitados ya que estoy trabajando con un microcontrolador. ¿Existe una expansión de la serie taylor, una tabla de búsqueda común o un enfoque recursivo?
Prefiero hacer algo sin usar math.h sqrt ()
Respuestas:
si desea una expansión de la serie de potencia optimizada barata y sucia (los coeficientes de la serie de Taylor convergen lentamente) para sqrt()
y un montón de otros trancendentals, tengo algún código de hace mucho tiempo. Solía vender este código, pero nadie me lo ha pagado por casi una década. así que creo que lo lanzaré para consumo público. Este archivo en particular era para una aplicación donde el procesador tenía coma flotante (precisión única IEEE-754) y tenían un compilador C y un sistema de desarrollo, pero no teníantener (o no querían vincular) el stdlib que habría tenido las funciones matemáticas estándar. no necesitaban una precisión perfecta, pero querían que las cosas fueran rápidas. puede hacer ingeniería inversa del código con bastante facilidad para ver cuáles son los coeficientes de la serie de potencia y escribir su propio código. este código asume IEEE-754 y enmascara los bits para mantisa y exponente.
parece que el "marcado de código" que tiene SE no es amigable con los caracteres angulares (ya sabes ">" o "<"), por lo que probablemente tendrás que presionar "editar" para verlo todo.
//
// FILE: __functions.h
//
// fast and approximate transcendental functions
//
// copyright (c) 2004 Robert Bristow-Johnson
//
// rbj@audioimagination.com
//
#ifndef __FUNCTIONS_H
#define __FUNCTIONS_H
#define TINY 1.0e-8
#define HUGE 1.0e8
#define PI (3.1415926535897932384626433832795028841972) /* pi */
#define ONE_OVER_PI (0.3183098861837906661338147750939)
#define TWOPI (6.2831853071795864769252867665590057683943) /* 2*pi */
#define ONE_OVER_TWOPI (0.15915494309189535682609381638)
#define PI_2 (1.5707963267948966192313216916397514420986) /* pi/2 */
#define TWO_OVER_PI (0.636619772367581332267629550188)
#define LN2 (0.6931471805599453094172321214581765680755) /* ln(2) */
#define ONE_OVER_LN2 (1.44269504088896333066907387547)
#define LN10 (2.3025850929940456840179914546843642076011) /* ln(10) */
#define ONE_OVER_LN10 (0.43429448190325177635683940025)
#define ROOT2 (1.4142135623730950488016887242096980785697) /* sqrt(2) */
#define ONE_OVER_ROOT2 (0.707106781186547438494264988549)
#define DB_LOG2_ENERGY (3.01029995663981154631945610163) /* dB = DB_LOG2_ENERGY*__log2(energy) */
#define DB_LOG2_AMPL (6.02059991327962309263891220326) /* dB = DB_LOG2_AMPL*__log2(amplitude) */
#define ONE_OVER_DB_LOG2_AMPL (0.16609640474436811218256075335) /* amplitude = __exp2(ONE_OVER_DB_LOG2_AMPL*dB) */
#define LONG_OFFSET 4096L
#define FLOAT_OFFSET 4096.0
float __sqrt(float x);
float __log2(float x);
float __exp2(float x);
float __log(float x);
float __exp(float x);
float __pow(float x, float y);
float __sin_pi(float x);
float __cos_pi(float x);
float __sin(float x);
float __cos(float x);
float __tan(float x);
float __atan(float x);
float __asin(float x);
float __acos(float x);
float __arg(float Imag, float Real);
float __poly(float *a, int order, float x);
float __map(float *f, float scaler, float x);
float __discreteMap(float *f, float scaler, float x);
unsigned long __random();
#endif
//
// FILE: __functions.c
//
// fast and approximate transcendental functions
//
// copyright (c) 2004 Robert Bristow-Johnson
//
// rbj@audioimagination.com
//
#define STD_MATH_LIB 0
#include "__functions.h"
#if STD_MATH_LIB
#include "math.h" // angle brackets don't work with SE markup
#endif
float __sqrt(register float x)
{
#if STD_MATH_LIB
return (float) sqrt((double)x);
#else
if (x > 5.877471754e-39)
{
register float accumulator, xPower;
register long intPart;
register union {float f; long i;} xBits;
xBits.f = x;
intPart = ((xBits.i)>>23); /* get biased exponent */
intPart -= 127; /* unbias it */
x = (float)(xBits.i & 0x007FFFFF); /* mask off exponent leaving 0x800000*(mantissa - 1) */
x *= 1.192092895507812e-07; /* divide by 0x800000 */
accumulator = 1.0 + 0.49959804148061*x;
xPower = x*x;
accumulator += -0.12047308243453*xPower;
xPower *= x;
accumulator += 0.04585425015501*xPower;
xPower *= x;
accumulator += -0.01076564682800*xPower;
if (intPart & 0x00000001)
{
accumulator *= ROOT2; /* an odd input exponent means an extra sqrt(2) in the output */
}
xBits.i = intPart >> 1; /* divide exponent by 2, lose LSB */
xBits.i += 127; /* rebias exponent */
xBits.i <<= 23; /* move biased exponent into exponent bits */
return accumulator * xBits.f;
}
else
{
return 0.0;
}
#endif
}
float __log2(register float x)
{
#if STD_MATH_LIB
return (float) (ONE_OVER_LN2*log((double)x));
#else
if (x > 5.877471754e-39)
{
register float accumulator, xPower;
register long intPart;
register union {float f; long i;} xBits;
xBits.f = x;
intPart = ((xBits.i)>>23); /* get biased exponent */
intPart -= 127; /* unbias it */
x = (float)(xBits.i & 0x007FFFFF); /* mask off exponent leaving 0x800000*(mantissa - 1) */
x *= 1.192092895507812e-07; /* divide by 0x800000 */
accumulator = 1.44254494359510*x;
xPower = x*x;
accumulator += -0.71814525675041*xPower;
xPower *= x;
accumulator += 0.45754919692582*xPower;
xPower *= x;
accumulator += -0.27790534462866*xPower;
xPower *= x;
accumulator += 0.12179791068782*xPower;
xPower *= x;
accumulator += -0.02584144982967*xPower;
return accumulator + (float)intPart;
}
else
{
return -HUGE;
}
#endif
}
float __exp2(register float x)
{
#if STD_MATH_LIB
return (float) exp(LN2*(double)x);
#else
if (x >= -127.0)
{
register float accumulator, xPower;
register union {float f; long i;} xBits;
xBits.i = (long)(x + FLOAT_OFFSET) - LONG_OFFSET; /* integer part */
x -= (float)(xBits.i); /* fractional part */
accumulator = 1.0 + 0.69303212081966*x;
xPower = x*x;
accumulator += 0.24137976293709*xPower;
xPower *= x;
accumulator += 0.05203236900844*xPower;
xPower *= x;
accumulator += 0.01355574723481*xPower;
xBits.i += 127; /* bias integer part */
xBits.i <<= 23; /* move biased int part into exponent bits */
return accumulator * xBits.f;
}
else
{
return 0.0;
}
#endif
}
float __log(register float x)
{
#if STD_MATH_LIB
return (float) log((double)x);
#else
return LN2*__log2(x);
#endif
}
float __exp(register float x)
{
#if STD_MATH_LIB
return (float) exp((double)x);
#else
return __exp2(ONE_OVER_LN2*x);
#endif
}
float __pow(float x, float y)
{
#if STD_MATH_LIB
return (float) pow((double)x, (double)y);
#else
return __exp2(y*__log2(x));
#endif
}
float __sin_pi(register float x)
{
#if STD_MATH_LIB
return (float) sin(PI*(double)x);
#else
register float accumulator, xPower, xSquared;
register long evenIntPart = ((long)(0.5*x + 1024.5) - 1024)<<1;
x -= (float)evenIntPart;
xSquared = x*x;
accumulator = 3.14159265358979*x;
xPower = xSquared*x;
accumulator += -5.16731953364340*xPower;
xPower *= xSquared;
accumulator += 2.54620566822659*xPower;
xPower *= xSquared;
accumulator += -0.586027023087261*xPower;
xPower *= xSquared;
accumulator += 0.06554823491427*xPower;
return accumulator;
#endif
}
float __cos_pi(register float x)
{
#if STD_MATH_LIB
return (float) cos(PI*(double)x);
#else
register float accumulator, xPower, xSquared;
register long evenIntPart = ((long)(0.5*x + 1024.5) - 1024)<<1;
x -= (float)evenIntPart;
xSquared = x*x;
accumulator = 1.57079632679490*x; /* series for sin(PI/2*x) */
xPower = xSquared*x;
accumulator += -0.64596406188166*xPower;
xPower *= xSquared;
accumulator += 0.07969158490912*xPower;
xPower *= xSquared;
accumulator += -0.00467687997706*xPower;
xPower *= xSquared;
accumulator += 0.00015303015470*xPower;
return 1.0 - 2.0*accumulator*accumulator; /* cos(w) = 1 - 2*(sin(w/2))^2 */
#endif
}
float __sin(register float x)
{
#if STD_MATH_LIB
return (float) sin((double)x);
#else
x *= ONE_OVER_PI;
return __sin_pi(x);
#endif
}
float __cos(register float x)
{
#if STD_MATH_LIB
return (float) cos((double)x);
#else
x *= ONE_OVER_PI;
return __cos_pi(x);
#endif
}
float __tan(register float x)
{
#if STD_MATH_LIB
return (float) tan((double)x);
#else
x *= ONE_OVER_PI;
return __sin_pi(x)/__cos_pi(x);
#endif
}
float __atan(register float x)
{
#if STD_MATH_LIB
return (float) atan((double)x);
#else
register float accumulator, xPower, xSquared, offset;
offset = 0.0;
if (x < -1.0)
{
offset = -PI_2;
x = -1.0/x;
}
else if (x > 1.0)
{
offset = PI_2;
x = -1.0/x;
}
xSquared = x*x;
accumulator = 1.0;
xPower = xSquared;
accumulator += 0.33288950512027*xPower;
xPower *= xSquared;
accumulator += -0.08467922817644*xPower;
xPower *= xSquared;
accumulator += 0.03252232640125*xPower;
xPower *= xSquared;
accumulator += -0.00749305860992*xPower;
return offset + x/accumulator;
#endif
}
float __asin(register float x)
{
#if STD_MATH_LIB
return (float) asin((double)x);
#else
return __atan(x/__sqrt(1.0 - x*x));
#endif
}
float __acos(register float x)
{
#if STD_MATH_LIB
return (float) acos((double)x);
#else
return __atan(__sqrt(1.0 - x*x)/x);
#endif
}
float __arg(float Imag, float Real)
{
#if STD_MATH_LIB
return (float) atan2((double)Imag, (double)Real);
#else
register float accumulator, xPower, xSquared, offset, x;
if (Imag > 0.0)
{
if (Imag <= -Real)
{
offset = PI;
x = Imag/Real;
}
else if (Imag > Real)
{
offset = PI_2;
x = -Real/Imag;
}
else
{
offset = 0.0;
x = Imag/Real;
}
}
else
{
if (Imag >= Real)
{
offset = -PI;
x = Imag/Real;
}
else if (Imag < -Real)
{
offset = -PI_2;
x = -Real/Imag;
}
else
{
offset = 0.0;
x = Imag/Real;
}
}
xSquared = x*x;
accumulator = 1.0;
xPower = xSquared;
accumulator += 0.33288950512027*xPower;
xPower *= xSquared;
accumulator += -0.08467922817644*xPower;
xPower *= xSquared;
accumulator += 0.03252232640125*xPower;
xPower *= xSquared;
accumulator += -0.00749305860992*xPower;
return offset + x/accumulator;
#endif
}
float __poly(float *a, int order, float x)
{
register float accumulator = 0.0, xPower;
register int n;
accumulator = a[0];
xPower = x;
for (n=1; n<=order; n++)
{
accumulator += a[n]*xPower;
xPower *= x;
}
return accumulator;
}
float __map(float *f, float scaler, float x)
{
register long i;
x *= scaler;
i = (long)(x + FLOAT_OFFSET) - LONG_OFFSET; /* round down without floor() */
return f[i] + (f[i+1] - f[i])*(x - (float)i); /* linear interpolate between points */
}
float __discreteMap(float *f, float scaler, float x)
{
register long i;
x *= scaler;
i = (long)(x + (FLOAT_OFFSET+0.5)) - LONG_OFFSET; /* round to nearest */
return f[i];
}
unsigned long __random()
{
static unsigned long seed0 = 0x5B7A2775, seed1 = 0x80C7169F;
seed0 += seed1;
seed1 += seed0;
return seed1;
}
stdlib
.
Si no lo ha visto, la "raíz cuadrada de Quake" es simplemente desconcertante. Utiliza algo de magia a nivel de bits para darte una muy buena primera aproximación, y luego usa una ronda o dos de aproximación de Newton para revisar. Podría ayudarlo si está trabajando con recursos limitados.
https://en.wikipedia.org/wiki/Fast_inverse_square_root
http://betterexplained.com/articles/understanding-quakes-fast-inverse-square-root/
Sin embargo, hay una advertencia que debemos tener en cuenta al mirar la ecuación anterior. Para las raíces cuadradas, la solución debe ser positiva y, por lo tanto, para que las iteraciones (y el resultado) sean positivas, se debe cumplir la siguiente condición:
Por lo tanto:
Como su etiqueta está buscando un algoritmo C
, escribamos uno muy rápidamente:
#include <stdio.h> // For printf
#include <math.h> // For fabs
void main()
{
float a = 5.0; // Number we want to take the square root of
float x = 1.0; // Initial guess
float xprev; // Root for previous iteration
int count; // Counter for iterations
// Find a better initial guess
// Half at each step until condition is satisfied
while (x*x*a >= 3.0)
x *= 0.5;
printf("Initial guess: %f\n", x);
count = 1;
do {
xprev = x; // Save for previous iteration
printf("Iteration #%d: %f\n", count++, x);
x = 0.5*(3*xprev - (xprev*xprev*xprev)*a); // Find square root of the reciprocal
} while (fabs(x - xprev) > 1e-6);
x *= a; // Actual answer - Multiply by a
printf("Square root is: %f\n", x);
printf("Done!");
}
Esta es una implementación bastante básica del método de Newton. Tenga en cuenta que sigo disminuyendo la suposición inicial a la mitad hasta que se cumpla la condición de la que hablamos anteriormente. También estoy tratando de encontrar la raíz cuadrada de 5. Sabemos que esto es aproximadamente igual a 2.236 más o menos. El uso del código anterior da el siguiente resultado:
Initial guess: 0.500000
Iteration #1: 0.500000
Iteration #2: 0.437500
Iteration #3: 0.446899
Iteration #4: 0.447213
Square root is: 2.236068
Done!
Initial guess: 0.015625
Iteration #1: 0.015625
Iteration #2: 0.004601
Iteration #3: 0.006420
Iteration #4: 0.008323
Iteration #5: 0.009638
Iteration #6: 0.010036
Iteration #7: 0.010062
Square root is: 99.378067
Done!
Como puede ver, lo único que es diferente es cuántas iteraciones se requieren para calcular la raíz cuadrada. Cuanto mayor sea el número de lo que desea calcular, más iteraciones tomará.
Sé que este método ya se sugirió en una publicación anterior, ¡pero pensé que derivaría el método y proporcionaría un código!
Sí, una serie de potencia puede aproximar de manera rápida y eficiente la función de raíz cuadrada, y solo en un dominio limitado. cuanto más amplio sea el dominio, más términos necesitará en su serie de potencia para mantener el error lo suficientemente bajo.
dónde
si es punto flotante, debe separar el exponente y la mantisa como lo hace mi código C en la otra respuesta.
En realidad, se hace resolviendo una ecuación cuadrática usando el Método Newton:
http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
Para números mayores que uno, puede usar la siguiente expansión de Taylor:
Dentro del 4% de precisión, si no recuerdo mal. Fue utilizado por ingenieros, antes de reglas y calculadoras logarítmicas. Lo aprendí en Notes et formules de l'ingénieur, De Laharpe , 1923.