En algunos casos, cuando se usan matrices numpy, se usan random.shuffle
datos duplicados creados en la matriz.
Una alternativa es usar numpy.random.shuffle
. Si ya está trabajando con numpy, este es el método preferido sobre el genérico random.shuffle
.
numpy.random.shuffle
Ejemplo
>>> import numpy as np
>>> import random
Utilizando random.shuffle
:
>>> foo = np.array([[1,2,3],[4,5,6],[7,8,9]])
>>> foo
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
>>> random.shuffle(foo)
>>> foo
array([[1, 2, 3],
[1, 2, 3],
[4, 5, 6]])
Utilizando numpy.random.shuffle
:
>>> foo = np.array([[1,2,3],[4,5,6],[7,8,9]])
>>> foo
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
>>> np.random.shuffle(foo)
>>> foo
array([[1, 2, 3],
[7, 8, 9],
[4, 5, 6]])