Digamos que tenemos 0.33, necesitamos generar "1/3". Si tenemos "0.4", necesitamos generar "2/5".
Es incorrecto en el caso común, debido a 1/3 = 0.3333333 = 0. (3) Además, es imposible averiguar a partir de las soluciones sugeridas anteriormente si el decimal se puede convertir a fracción con precisión definida, porque la salida siempre es fracción.
PERO, sugiero mi función integral con muchas opciones basadas en la idea de series geométricas infinitas , específicamente en la fórmula:
Al principio, esta función intenta encontrar un período de fracción en la representación de cadena. Después se aplica la fórmula descrita anteriormente.
El código de números racionales se toma prestado de la implementación de números racionales de Stephen M. McKamey en C #. Espero que no sea muy difícil migrar mi código a otros idiomas.
/// <summary>
/// Convert decimal to fraction
/// </summary>
/// <param name="value">decimal value to convert</param>
/// <param name="result">result fraction if conversation is succsess</param>
/// <param name="decimalPlaces">precision of considereation frac part of value</param>
/// <param name="trimZeroes">trim zeroes on the right part of the value or not</param>
/// <param name="minPeriodRepeat">minimum period repeating</param>
/// <param name="digitsForReal">precision for determination value to real if period has not been founded</param>
/// <returns></returns>
public static bool FromDecimal(decimal value, out Rational<T> result,
int decimalPlaces = 28, bool trimZeroes = false, decimal minPeriodRepeat = 2, int digitsForReal = 9)
{
var valueStr = value.ToString("0.0000000000000000000000000000", CultureInfo.InvariantCulture);
var strs = valueStr.Split('.');
long intPart = long.Parse(strs[0]);
string fracPartTrimEnd = strs[1].TrimEnd(new char[] { '0' });
string fracPart;
if (trimZeroes)
{
fracPart = fracPartTrimEnd;
decimalPlaces = Math.Min(decimalPlaces, fracPart.Length);
}
else
fracPart = strs[1];
result = new Rational<T>();
try
{
string periodPart;
bool periodFound = false;
int i;
for (i = 0; i < fracPart.Length; i++)
{
if (fracPart[i] == '0' && i != 0)
continue;
for (int j = i + 1; j < fracPart.Length; j++)
{
periodPart = fracPart.Substring(i, j - i);
periodFound = true;
decimal periodRepeat = 1;
decimal periodStep = 1.0m / periodPart.Length;
var upperBound = Math.Min(fracPart.Length, decimalPlaces);
int k;
for (k = i + periodPart.Length; k < upperBound; k += 1)
{
if (periodPart[(k - i) % periodPart.Length] != fracPart[k])
{
periodFound = false;
break;
}
periodRepeat += periodStep;
}
if (!periodFound && upperBound - k <= periodPart.Length && periodPart[(upperBound - i) % periodPart.Length] > '5')
{
var ind = (k - i) % periodPart.Length;
var regroupedPeriod = (periodPart.Substring(ind) + periodPart.Remove(ind)).Substring(0, upperBound - k);
ulong periodTailPlusOne = ulong.Parse(regroupedPeriod) + 1;
ulong fracTail = ulong.Parse(fracPart.Substring(k, regroupedPeriod.Length));
if (periodTailPlusOne == fracTail)
periodFound = true;
}
if (periodFound && periodRepeat >= minPeriodRepeat)
{
result = FromDecimal(strs[0], fracPart.Substring(0, i), periodPart);
break;
}
else
periodFound = false;
}
if (periodFound)
break;
}
if (!periodFound)
{
if (fracPartTrimEnd.Length >= digitsForReal)
return false;
else
{
result = new Rational<T>(long.Parse(strs[0]), 1, false);
if (fracPartTrimEnd.Length != 0)
result = new Rational<T>(ulong.Parse(fracPartTrimEnd), TenInPower(fracPartTrimEnd.Length));
return true;
}
}
return true;
}
catch
{
return false;
}
}
public static Rational<T> FromDecimal(string intPart, string fracPart, string periodPart)
{
Rational<T> firstFracPart;
if (fracPart != null && fracPart.Length != 0)
{
ulong denominator = TenInPower(fracPart.Length);
firstFracPart = new Rational<T>(ulong.Parse(fracPart), denominator);
}
else
firstFracPart = new Rational<T>(0, 1, false);
Rational<T> secondFracPart;
if (periodPart != null && periodPart.Length != 0)
secondFracPart =
new Rational<T>(ulong.Parse(periodPart), TenInPower(fracPart.Length)) *
new Rational<T>(1, Nines((ulong)periodPart.Length), false);
else
secondFracPart = new Rational<T>(0, 1, false);
var result = firstFracPart + secondFracPart;
if (intPart != null && intPart.Length != 0)
{
long intPartLong = long.Parse(intPart);
result = new Rational<T>(intPartLong, 1, false) + (intPartLong == 0 ? 1 : Math.Sign(intPartLong)) * result;
}
return result;
}
private static ulong TenInPower(int power)
{
ulong result = 1;
for (int l = 0; l < power; l++)
result *= 10;
return result;
}
private static decimal TenInNegPower(int power)
{
decimal result = 1;
for (int l = 0; l > power; l--)
result /= 10.0m;
return result;
}
private static ulong Nines(ulong power)
{
ulong result = 9;
if (power >= 0)
for (ulong l = 0; l < power - 1; l++)
result = result * 10 + 9;
return result;
}
Hay algunos ejemplos de usos:
Rational<long>.FromDecimal(0.33333333m, out r, 8, false);
// then r == 1 / 3;
Rational<long>.FromDecimal(0.33333333m, out r, 9, false);
// then r == 33333333 / 100000000;
Su caso con el recorte de piezas cero de la pieza correcta:
Rational<long>.FromDecimal(0.33m, out r, 28, true);
// then r == 1 / 3;
Rational<long>.FromDecimal(0.33m, out r, 28, true);
// then r == 33 / 100;
Demostración de período mínimo:
Rational<long>.FromDecimal(0.123412m, out r, 28, true, 1.5m));
// then r == 1234 / 9999;
Rational<long>.FromDecimal(0.123412m, out r, 28, true, 1.6m));
// then r == 123412 / 1000000; because of minimu repeating of period is 0.1234123 in this case.
Redondeo al final:
Rational<long>.FromDecimal(0.8888888888888888888888888889m, out r));
// then r == 8 == 9;
El caso más interesante:
Rational<long>.FromDecimal(0.12345678m, out r, 28, true, 2, 9);
// then r == 12345678 / 100000000;
Rational<long>.FromDecimal(0.12345678m, out r, 28, true, 2, 8);
// Conversation failed, because of period has not been founded and there are too many digits in fraction part of input value.
Rational<long>.FromDecimal(0.12121212121212121m, out r, 28, true, 2, 9));
// then r == 4 / 33; Despite of too many digits in input value, period has been founded. Thus it's possible to convert value to fraction.
Otras pruebas y códigos que todos pueden encontrar en mi biblioteca MathFunctions en github .
.33
=>"1/3"
me concierne; Yo esperaría.33
=>"33/100"
. Supongo que quiso decir,.33...
por supuesto, pero expone un problema con la pregunta: antes de que podamos establecer un algoritmo, debemos decidir el comportamiento esperado. La respuesta de Python de @ Debilski utiliza.limit_denominator()
el valor predeterminado de un denominador máximo de 10 ^ 7; probablemente un buen valor por defecto en la práctica, pero esto todavía puede introducir errores si no tiene cuidado, y lo hace de retorno"33/100"
en el.33
caso.