Esto se relaciona con una pregunta anterior de junio:
Cálculo de expectativas para una distribución personalizada en Mathematica
Tengo una distribución mixta personalizada definida usando una segunda distribución personalizada siguiendo las líneas discutidas @Sasha
en varias respuestas durante el año pasado.
El código que define las distribuciones sigue:
nDist /: CharacteristicFunction[nDist[a_, b_, m_, s_],
t_] := (a b E^(I m t - (s^2 t^2)/2))/((I a + t) (-I b + t));
nDist /: PDF[nDist[a_, b_, m_, s_], x_] := (1/(2*(a + b)))*a*
b*(E^(a*(m + (a*s^2)/2 - x))* Erfc[(m + a*s^2 - x)/(Sqrt[2]*s)] +
E^(b*(-m + (b*s^2)/2 + x))*
Erfc[(-m + b*s^2 + x)/(Sqrt[2]*s)]);
nDist /: CDF[nDist[a_, b_, m_, s_],
x_] := ((1/(2*(a + b)))*((a + b)*E^(a*x)*
Erfc[(m - x)/(Sqrt[2]*s)] -
b*E^(a*m + (a^2*s^2)/2)*Erfc[(m + a*s^2 - x)/(Sqrt[2]*s)] +
a*E^((-b)*m + (b^2*s^2)/2 + a*x + b*x)*
Erfc[(-m + b*s^2 + x)/(Sqrt[2]*s)]))/ E^(a*x);
nDist /: Quantile[nDist[a_, b_, m_, s_], p_] :=
Module[{x},
x /. FindRoot[CDF[nDist[a, b, m, s], x] == #, {x, m}] & /@ p] /;
VectorQ[p, 0 < # < 1 &]
nDist /: Quantile[nDist[a_, b_, m_, s_], p_] :=
Module[{x}, x /. FindRoot[CDF[nDist[a, b, m, s], x] == p, {x, m}]] /;
0 < p < 1
nDist /: Quantile[nDist[a_, b_, m_, s_], p_] := -Infinity /; p == 0
nDist /: Quantile[nDist[a_, b_, m_, s_], p_] := Infinity /; p == 1
nDist /: Mean[nDist[a_, b_, m_, s_]] := 1/a - 1/b + m;
nDist /: Variance[nDist[a_, b_, m_, s_]] := 1/a^2 + 1/b^2 + s^2;
nDist /: StandardDeviation[ nDist[a_, b_, m_, s_]] :=
Sqrt[ 1/a^2 + 1/b^2 + s^2];
nDist /: DistributionDomain[nDist[a_, b_, m_, s_]] :=
Interval[{0, Infinity}]
nDist /: DistributionParameterQ[nDist[a_, b_, m_, s_]] := !
TrueQ[Not[Element[{a, b, s, m}, Reals] && a > 0 && b > 0 && s > 0]]
nDist /: DistributionParameterAssumptions[nDist[a_, b_, m_, s_]] :=
Element[{a, b, s, m}, Reals] && a > 0 && b > 0 && s > 0
nDist /: Random`DistributionVector[nDist[a_, b_, m_, s_], n_, prec_] :=
RandomVariate[ExponentialDistribution[a], n,
WorkingPrecision -> prec] -
RandomVariate[ExponentialDistribution[b], n,
WorkingPrecision -> prec] +
RandomVariate[NormalDistribution[m, s], n,
WorkingPrecision -> prec];
(* Fitting: This uses Mean, central moments 2 and 3 and 4th cumulant \
but it often does not provide a solution *)
nDistParam[data_] := Module[{mn, vv, m3, k4, al, be, m, si},
mn = Mean[data];
vv = CentralMoment[data, 2];
m3 = CentralMoment[data, 3];
k4 = Cumulant[data, 4];
al =
ConditionalExpression[
Root[864 - 864 m3 #1^3 - 216 k4 #1^4 + 648 m3^2 #1^6 +
36 k4^2 #1^8 - 216 m3^3 #1^9 + (-2 k4^3 + 27 m3^4) #1^12 &,
2], k4 > Root[-27 m3^4 + 4 #1^3 &, 1]];
be = ConditionalExpression[
Root[2 Root[
864 - 864 m3 #1^3 - 216 k4 #1^4 + 648 m3^2 #1^6 +
36 k4^2 #1^8 -
216 m3^3 #1^9 + (-2 k4^3 + 27 m3^4) #1^12 &,
2]^3 + (-2 +
m3 Root[
864 - 864 m3 #1^3 - 216 k4 #1^4 + 648 m3^2 #1^6 +
36 k4^2 #1^8 -
216 m3^3 #1^9 + (-2 k4^3 + 27 m3^4) #1^12 &,
2]^3) #1^3 &, 1], k4 > Root[-27 m3^4 + 4 #1^3 &, 1]];
m = mn - 1/al + 1/be;
si =
Sqrt[Abs[-al^-2 - be^-2 + vv ]];(*Ensure positive*)
{al,
be, m, si}];
nDistLL =
Compile[{a, b, m, s, {x, _Real, 1}},
Total[Log[
1/(2 (a +
b)) a b (E^(a (m + (a s^2)/2 - x)) Erfc[(m + a s^2 -
x)/(Sqrt[2] s)] +
E^(b (-m + (b s^2)/2 + x)) Erfc[(-m + b s^2 +
x)/(Sqrt[2] s)])]](*, CompilationTarget->"C",
RuntimeAttributes->{Listable}, Parallelization->True*)];
nlloglike[data_, a_?NumericQ, b_?NumericQ, m_?NumericQ, s_?NumericQ] :=
nDistLL[a, b, m, s, data];
nFit[data_] := Module[{a, b, m, s, a0, b0, m0, s0, res},
(* So far have not found a good way to quickly estimate a and \
b. Starting assumption is that they both = 2,then m0 ~=
Mean and s0 ~=
StandardDeviation it seems to work better if a and b are not the \
same at start. *)
{a0, b0, m0, s0} = nDistParam[data];(*may give Undefined values*)
If[! (VectorQ[{a0, b0, m0, s0}, NumericQ] &&
VectorQ[{a0, b0, s0}, # > 0 &]),
m0 = Mean[data];
s0 = StandardDeviation[data];
a0 = 1;
b0 = 2;];
res = {a, b, m, s} /.
FindMaximum[
nlloglike[data, Abs[a], Abs[b], m,
Abs[s]], {{a, a0}, {b, b0}, {m, m0}, {s, s0}},
Method -> "PrincipalAxis"][[2]];
{Abs[res[[1]]], Abs[res[[2]]], res[[3]], Abs[res[[4]]]}];
nFit[data_, {a0_, b0_, m0_, s0_}] := Module[{a, b, m, s, res},
res = {a, b, m, s} /.
FindMaximum[
nlloglike[data, Abs[a], Abs[b], m,
Abs[s]], {{a, a0}, {b, b0}, {m, m0}, {s, s0}},
Method -> "PrincipalAxis"][[2]];
{Abs[res[[1]]], Abs[res[[2]]], res[[3]], Abs[res[[4]]]}];
dDist /: PDF[dDist[a_, b_, m_, s_], x_] :=
PDF[nDist[a, b, m, s], Log[x]]/x;
dDist /: CDF[dDist[a_, b_, m_, s_], x_] :=
CDF[nDist[a, b, m, s], Log[x]];
dDist /: EstimatedDistribution[data_, dDist[a_, b_, m_, s_]] :=
dDist[Sequence @@ nFit[Log[data]]];
dDist /: EstimatedDistribution[data_,
dDist[a_, b_, m_,
s_], {{a_, a0_}, {b_, b0_}, {m_, m0_}, {s_, s0_}}] :=
dDist[Sequence @@ nFit[Log[data], {a0, b0, m0, s0}]];
dDist /: Quantile[dDist[a_, b_, m_, s_], p_] :=
Module[{x}, x /. FindRoot[CDF[dDist[a, b, m, s], x] == p, {x, s}]] /;
0 < p < 1
dDist /: Quantile[dDist[a_, b_, m_, s_], p_] :=
Module[{x},
x /. FindRoot[ CDF[dDist[a, b, m, s], x] == #, {x, s}] & /@ p] /;
VectorQ[p, 0 < # < 1 &]
dDist /: Quantile[dDist[a_, b_, m_, s_], p_] := -Infinity /; p == 0
dDist /: Quantile[dDist[a_, b_, m_, s_], p_] := Infinity /; p == 1
dDist /: DistributionDomain[dDist[a_, b_, m_, s_]] :=
Interval[{0, Infinity}]
dDist /: DistributionParameterQ[dDist[a_, b_, m_, s_]] := !
TrueQ[Not[Element[{a, b, s, m}, Reals] && a > 0 && b > 0 && s > 0]]
dDist /: DistributionParameterAssumptions[dDist[a_, b_, m_, s_]] :=
Element[{a, b, s, m}, Reals] && a > 0 && b > 0 && s > 0
dDist /: Random`DistributionVector[dDist[a_, b_, m_, s_], n_, prec_] :=
Exp[RandomVariate[ExponentialDistribution[a], n,
WorkingPrecision -> prec] -
RandomVariate[ExponentialDistribution[b], n,
WorkingPrecision -> prec] +
RandomVariate[NormalDistribution[m, s], n,
WorkingPrecision -> prec]];
Esto me permite ajustar los parámetros de distribución y generar PDF y CDF . Un ejemplo de las tramas:
Plot[PDF[dDist[3.77, 1.34, -2.65, 0.40], x], {x, 0, .3},
PlotRange -> All]
Plot[CDF[dDist[3.77, 1.34, -2.65, 0.40], x], {x, 0, .3},
PlotRange -> All]
Ahora he definido a function
para calcular la vida residual media (vea esta pregunta para obtener una explicación).
MeanResidualLife[start_, dist_] :=
NExpectation[X \[Conditioned] X > start, X \[Distributed] dist] -
start
MeanResidualLife[start_, limit_, dist_] :=
NExpectation[X \[Conditioned] start <= X <= limit,
X \[Distributed] dist] - start
El primero de estos que no establece un límite como en el segundo toma mucho tiempo para calcular, pero ambos funcionan.
Ahora necesito encontrar el mínimo de la MeanResidualLife
función para la misma distribución (o alguna variación de la misma) o minimizarla.
He intentado una serie de variaciones sobre esto:
FindMinimum[MeanResidualLife[x, dDist[3.77, 1.34, -2.65, 0.40]], x]
FindMinimum[MeanResidualLife[x, 1, dDist[3.77, 1.34, -2.65, 0.40]], x]
NMinimize[{MeanResidualLife[x, dDist[3.77, 1.34, -2.65, 0.40]],
0 <= x <= 1}, x]
NMinimize[{MeanResidualLife[x, 1, dDist[3.77, 1.34, -2.65, 0.40]], 0 <= x <= 1}, x]
Estos parecen ejecutarse para siempre o encontrarse con:
Poder :: infy: Expresión infinita 1 / 0. encontrada. >>
La MeanResidualLife
función aplicada a una distribución más simple pero de forma similar muestra que tiene un mínimo único:
Plot[PDF[LogNormalDistribution[1.75, 0.65], x], {x, 0, 30},
PlotRange -> All]
Plot[MeanResidualLife[x, LogNormalDistribution[1.75, 0.65]], {x, 0,
30},
PlotRange -> {{0, 30}, {4.5, 8}}]
También ambos:
FindMinimum[MeanResidualLife[x, LogNormalDistribution[1.75, 0.65]], x]
FindMinimum[MeanResidualLife[x, 30, LogNormalDistribution[1.75, 0.65]], x]
darme respuestas (si es con un montón de mensajes primero) cuando se usa con el LogNormalDistribution
.
¿Alguna idea sobre cómo hacer que esto funcione para la distribución personalizada descrita anteriormente?
¿Necesito agregar restricciones u opciones?
¿Necesito definir algo más en las definiciones de las distribuciones personalizadas?
Tal vez el FindMinimum
o NMinimize
simplemente necesito correr más tiempo (los he ejecutado casi una hora en vano). Si es así, ¿necesito alguna forma de acelerar la búsqueda del mínimo de la función? ¿Alguna sugerencia sobre cómo?
¿ Mathematica
Tiene otra forma de hacer esto?
Añadido 9 feb 5:50 PM EST:
Cualquiera puede descargar la presentación de Oleksandr Pavlyk sobre la creación de distribuciones en Mathematica desde el taller Wolfram Technology Conference 2011 'Cree su propia distribución' aquí . Las descargas incluyen el cuaderno, 'ExampleOfParametricDistribution.nb'
que parece presentar todas las piezas necesarias para crear una distribución que se puede usar como las distribuciones que vienen con Mathematica.
Puede proporcionar algunas de las respuestas.