Aquí hay una comparación de rendimiento de las tres respuestas más votadas usando el cuaderno Jupyter. La entrada es una matriz dispersa aleatoria de 1M x 100K con densidad 0.001, que contiene 100M de valores distintos de cero:
from scipy.sparse import random
matrix = random(1000000, 100000, density=0.001, format='csr')
matrix
<1000000x100000 sparse matrix of type '<type 'numpy.float64'>'
with 100000000 stored elements in Compressed Sparse Row format>
io.mmwrite
/ io.mmread
from scipy.sparse import io
%time io.mmwrite('test_io.mtx', matrix)
CPU times: user 4min 37s, sys: 2.37 s, total: 4min 39s
Wall time: 4min 39s
%time matrix = io.mmread('test_io.mtx')
CPU times: user 2min 41s, sys: 1.63 s, total: 2min 43s
Wall time: 2min 43s
matrix
<1000000x100000 sparse matrix of type '<type 'numpy.float64'>'
with 100000000 stored elements in COOrdinate format>
Filesize: 3.0G.
(tenga en cuenta que el formato ha cambiado de csr a coo).
np.savez
/ np.load
import numpy as np
from scipy.sparse import csr_matrix
def save_sparse_csr(filename, array):
np.savez(filename, data=array.data, indices=array.indices,
indptr=array.indptr, shape=array.shape)
def load_sparse_csr(filename):
loader = np.load(filename + '.npz')
return csr_matrix((loader['data'], loader['indices'], loader['indptr']),
shape=loader['shape'])
%time save_sparse_csr('test_savez', matrix)
CPU times: user 1.26 s, sys: 1.48 s, total: 2.74 s
Wall time: 2.74 s
%time matrix = load_sparse_csr('test_savez')
CPU times: user 1.18 s, sys: 548 ms, total: 1.73 s
Wall time: 1.73 s
matrix
<1000000x100000 sparse matrix of type '<type 'numpy.float64'>'
with 100000000 stored elements in Compressed Sparse Row format>
Filesize: 1.1G.
cPickle
import cPickle as pickle
def save_pickle(matrix, filename):
with open(filename, 'wb') as outfile:
pickle.dump(matrix, outfile, pickle.HIGHEST_PROTOCOL)
def load_pickle(filename):
with open(filename, 'rb') as infile:
matrix = pickle.load(infile)
return matrix
%time save_pickle(matrix, 'test_pickle.mtx')
CPU times: user 260 ms, sys: 888 ms, total: 1.15 s
Wall time: 1.15 s
%time matrix = load_pickle('test_pickle.mtx')
CPU times: user 376 ms, sys: 988 ms, total: 1.36 s
Wall time: 1.37 s
matrix
<1000000x100000 sparse matrix of type '<type 'numpy.float64'>'
with 100000000 stored elements in Compressed Sparse Row format>
Filesize: 1.1G.
Nota : cPickle no funciona con objetos muy grandes (consulte esta respuesta ). En mi experiencia, no funcionó para una matriz de 2.7M x 50k con valores distintos de cero de 270M.
np.savez
La solución funcionó bien.
Conclusión
(basado en esta prueba simple para matrices CSR)
cPickle
es el método más rápido, pero no funciona con matrices muy grandes, np.savez
es solo un poco más lento, mientras que io.mmwrite
es mucho más lento, produce archivos más grandes y restaura el formato incorrecto. También lo np.savez
es el ganador aquí.