PRIMERA ACTUALIZACIÓN: antes de intentar esto en un entorno de producción (no recomendado), lea esto primero: http://www.javaspecialists.eu/archive/Issue237.html
A partir de Java 9, la solución descrita ya no funcionará , porque ahora Java almacenará cadenas como byte [] de forma predeterminada.
SEGUNDA ACTUALIZACIÓN: A partir del 25/10/2016, en mi AMDx64 8core y fuente 1.8, no hay diferencia entre usar 'charAt' y acceso de campo. Parece que jvm está lo suficientemente optimizado para en línea y racionalizar cualquier llamada 'string.charAt (n)'.
Todo depende de la duración de la String
inspección. Si, como dice la pregunta, es para cadenas largas , la forma más rápida de inspeccionar la cadena es usar la reflexión para acceder al respaldo char[]
de la cadena.
Un punto de referencia completamente aleatorio con JDK 8 (win32 y win64) en un 64 AMD Phenom II 4 core 955 @ 3.2 GHZ (tanto en modo cliente como en modo servidor) con 9 técnicas diferentes (¡ver más abajo!) Muestra que usar String.charAt(n)
es el más rápido para pequeños cadenas y que usar reflection
para acceder a la matriz de respaldo de cadenas es casi el doble de rápido para cadenas grandes.
EL EXPERIMENTO
Se prueban 9 técnicas diferentes de optimización.
Todos los contenidos de la cadena son aleatorios
La prueba se realiza para tamaños de cuerda en múltiplos de dos, comenzando con 0,1,2,4,8,16, etc.
Las pruebas se realizan 1,000 veces por tamaño de cadena
Las pruebas se barajan en orden aleatorio cada vez. En otras palabras, las pruebas se realizan en orden aleatorio cada vez que se realizan, más de 1000 veces.
Todo el conjunto de pruebas se realiza hacia adelante y hacia atrás para mostrar el efecto del calentamiento de JVM en la optimización y los tiempos.
Toda la suite se realiza dos veces, una en -client
modo y la otra en -server
modo.
CONCLUSIONES
-modo de cliente (32 bits)
Para cadenas de 1 a 256 caracteres de longitud , las llamadas string.charAt(i)
ganan con un procesamiento promedio de 13.4 millones a 588 millones de caracteres por segundo.
Además, en general es 5.5% más rápido (cliente) y 13.9% (servidor) así:
for (int i = 0; i < data.length(); i++) {
if (data.charAt(i) <= ' ') {
doThrow();
}
}
que así con una variable de longitud final local:
final int len = data.length();
for (int i = 0; i < len; i++) {
if (data.charAt(i) <= ' ') {
doThrow();
}
}
Para cadenas largas, de 512 a 256K caracteres de longitud , usar la reflexión para acceder a la matriz de respaldo de la cadena es más rápido. Esta técnica es casi el doble de rápida que String.charAt (i) (178% más rápido). La velocidad promedio en este rango fue de 1.111 mil millones de caracteres por segundo.
El campo debe obtenerse con anticipación y luego puede reutilizarse en la biblioteca en diferentes cadenas. Curiosamente, a diferencia del código anterior, con acceso de campo, es un 9% más rápido tener una variable de longitud final local que usar 'chars.length' en la verificación de bucle. Así es como el acceso de campo se puede configurar como más rápido:
final Field field = String.class.getDeclaredField("value");
field.setAccessible(true);
try {
final char[] chars = (char[]) field.get(data);
final int len = chars.length;
for (int i = 0; i < len; i++) {
if (chars[i] <= ' ') {
doThrow();
}
}
return len;
} catch (Exception ex) {
throw new RuntimeException(ex);
}
Comentarios especiales sobre el modo servidor
El acceso de campo comienza a ganar después de cadenas de 32 caracteres en modo servidor en una máquina Java de 64 bits en mi máquina AMD 64. Eso no se vio hasta 512 caracteres de longitud en modo cliente.
También vale la pena señalar que creo que cuando estaba ejecutando JDK 8 (compilación de 32 bits) en modo servidor, el rendimiento general fue un 7% más lento para cadenas grandes y pequeñas. Esto fue con la versión 121 de diciembre de 2013 de la versión temprana de JDK 8. Entonces, por ahora, parece que el modo de servidor de 32 bits es más lento que el modo de cliente de 32 bits.
Dicho esto ... parece que el único modo de servidor que vale la pena invocar es en una máquina de 64 bits. De lo contrario, en realidad obstaculiza el rendimiento.
Para la compilación de 32 bits que se ejecuta en -server mode
un AMD64, puedo decir esto:
- String.charAt (i) es el claro ganador en general. Aunque entre los tamaños de 8 a 512 caracteres hubo ganadores entre 'nuevo' 'reutilización' y 'campo'.
- String.charAt (i) es un 45% más rápido en modo cliente
- El acceso de campo es dos veces más rápido para cadenas grandes en modo cliente.
También vale la pena decir que String.chars () (Stream y la versión paralela) son un fracaso. Mucho más lento que cualquier otro. La Streams
API es una forma bastante lenta de realizar operaciones generales de cadena.
Lista de deseos
Java String podría tener un predicado que acepte métodos optimizados tales como contiene (predicado), forEach (consumer), forEachWithIndex (consumer). Por lo tanto, sin la necesidad de que el usuario conozca la duración o repita las llamadas a los métodos String, estos podrían ayudar a analizar las bibliotecas beep-beep beep
acelerando.
Sigue soñando :)
Happy Strings!
~ SH
La prueba utilizó los siguientes 9 métodos para probar la cadena en busca de espacios en blanco:
"charAt1" - COMPRUEBE EL CONTENIDO DE LA CADENA DE LA MANERA habitual:
int charAtMethod1(final String data) {
final int len = data.length();
for (int i = 0; i < len; i++) {
if (data.charAt(i) <= ' ') {
doThrow();
}
}
return len;
}
"charAt2" - LO MISMO QUE ARRIBA PERO UTILICE String.length () EN LUGAR DE HACER UNA INT. LOCAL FINAL POR LA LONGITUD
int charAtMethod2(final String data) {
for (int i = 0; i < data.length(); i++) {
if (data.charAt(i) <= ' ') {
doThrow();
}
}
return data.length();
}
"stream" - USE EL NUEVO IntStream de String JAVA-8 Y PÁGELO PREDICADO PARA HACER LA COMPROBACIÓN
int streamMethod(final String data, final IntPredicate predicate) {
if (data.chars().anyMatch(predicate)) {
doThrow();
}
return data.length();
}
"streamPara" - LO MISMO QUE ARRIBA, PERO OH-LA-LA - ¡¡VAYA PARALELO !!!
// avoid this at all costs
int streamParallelMethod(final String data, IntPredicate predicate) {
if (data.chars().parallel().anyMatch(predicate)) {
doThrow();
}
return data.length();
}
"reutilizar" - RELLENE UN CARGADOR REUTILIZABLE [] CON EL CONTENIDO DE LAS CUERDAS
int reuseBuffMethod(final char[] reusable, final String data) {
final int len = data.length();
data.getChars(0, len, reusable, 0);
for (int i = 0; i < len; i++) {
if (reusable[i] <= ' ') {
doThrow();
}
}
return len;
}
"new1" - OBTENGA UNA NUEVA COPIA DEL CHAR [] DESDE LA CADENA
int newMethod1(final String data) {
final int len = data.length();
final char[] copy = data.toCharArray();
for (int i = 0; i < len; i++) {
if (copy[i] <= ' ') {
doThrow();
}
}
return len;
}
"new2" - IGUAL QUE ARRIBA, PERO USE "PARA CADA"
int newMethod2(final String data) {
for (final char c : data.toCharArray()) {
if (c <= ' ') {
doThrow();
}
}
return data.length();
}
"campo1" - FANCY !! OBTENGA CAMPO PARA ACCEDER AL CHAR INTERNO DE LA CADENA []
int fieldMethod1(final Field field, final String data) {
try {
final char[] chars = (char[]) field.get(data);
final int len = chars.length;
for (int i = 0; i < len; i++) {
if (chars[i] <= ' ') {
doThrow();
}
}
return len;
} catch (Exception ex) {
throw new RuntimeException(ex);
}
}
"field2" - MISMO QUE ARRIBA, PERO USE "PARA CADA"
int fieldMethod2(final Field field, final String data) {
final char[] chars;
try {
chars = (char[]) field.get(data);
} catch (Exception ex) {
throw new RuntimeException(ex);
}
for (final char c : chars) {
if (c <= ' ') {
doThrow();
}
}
return chars.length;
}
RESULTADOS COMPUESTOS PARA -client
MODO CLIENTE (pruebas de avance y retroceso combinadas)
Nota: que el modo de cliente con Java de 32 bits y el modo de servidor con Java de 64 bits son los mismos que a continuación en mi máquina AMD64.
Size WINNER charAt1 charAt2 stream streamPar reuse new1 new2 field1 field2
1 charAt 77.0 72.0 462.0 584.0 127.5 89.5 86.0 159.5 165.0
2 charAt 38.0 36.5 284.0 32712.5 57.5 48.3 50.3 89.0 91.5
4 charAt 19.5 18.5 458.6 3169.0 33.0 26.8 27.5 54.1 52.6
8 charAt 9.8 9.9 100.5 1370.9 17.3 14.4 15.0 26.9 26.4
16 charAt 6.1 6.5 73.4 857.0 8.4 8.2 8.3 13.6 13.5
32 charAt 3.9 3.7 54.8 428.9 5.0 4.9 4.7 7.0 7.2
64 charAt 2.7 2.6 48.2 232.9 3.0 3.2 3.3 3.9 4.0
128 charAt 2.1 1.9 43.7 138.8 2.1 2.6 2.6 2.4 2.6
256 charAt 1.9 1.6 42.4 90.6 1.7 2.1 2.1 1.7 1.8
512 field1 1.7 1.4 40.6 60.5 1.4 1.9 1.9 1.3 1.4
1,024 field1 1.6 1.4 40.0 45.6 1.2 1.9 2.1 1.0 1.2
2,048 field1 1.6 1.3 40.0 36.2 1.2 1.8 1.7 0.9 1.1
4,096 field1 1.6 1.3 39.7 32.6 1.2 1.8 1.7 0.9 1.0
8,192 field1 1.6 1.3 39.6 30.5 1.2 1.8 1.7 0.9 1.0
16,384 field1 1.6 1.3 39.8 28.4 1.2 1.8 1.7 0.8 1.0
32,768 field1 1.6 1.3 40.0 26.7 1.3 1.8 1.7 0.8 1.0
65,536 field1 1.6 1.3 39.8 26.3 1.3 1.8 1.7 0.8 1.0
131,072 field1 1.6 1.3 40.1 25.4 1.4 1.9 1.8 0.8 1.0
262,144 field1 1.6 1.3 39.6 25.2 1.5 1.9 1.9 0.8 1.0
RESULTADOS COMPUESTOS PARA EL -server
MODO DE SERVIDOR (pruebas de avance y retroceso combinadas)
Nota: esta es la prueba para Java 32 bits que se ejecuta en modo servidor en un AMD64. El modo de servidor para Java de 64 bits era el mismo que el de Java de 32 bits en modo cliente, excepto que el acceso de campo comenzó a ganar después del tamaño de 32 caracteres.
Size WINNER charAt1 charAt2 stream streamPar reuse new1 new2 field1 field2
1 charAt 74.5 95.5 524.5 783.0 90.5 102.5 90.5 135.0 151.5
2 charAt 48.5 53.0 305.0 30851.3 59.3 57.5 52.0 88.5 91.8
4 charAt 28.8 32.1 132.8 2465.1 37.6 33.9 32.3 49.0 47.0
8 new2 18.0 18.6 63.4 1541.3 18.5 17.9 17.6 25.4 25.8
16 new2 14.0 14.7 129.4 1034.7 12.5 16.2 12.0 16.0 16.6
32 new2 7.8 9.1 19.3 431.5 8.1 7.0 6.7 7.9 8.7
64 reuse 6.1 7.5 11.7 204.7 3.5 3.9 4.3 4.2 4.1
128 reuse 6.8 6.8 9.0 101.0 2.6 3.0 3.0 2.6 2.7
256 field2 6.2 6.5 6.9 57.2 2.4 2.7 2.9 2.3 2.3
512 reuse 4.3 4.9 5.8 28.2 2.0 2.6 2.6 2.1 2.1
1,024 charAt 2.0 1.8 5.3 17.6 2.1 2.5 3.5 2.0 2.0
2,048 charAt 1.9 1.7 5.2 11.9 2.2 3.0 2.6 2.0 2.0
4,096 charAt 1.9 1.7 5.1 8.7 2.1 2.6 2.6 1.9 1.9
8,192 charAt 1.9 1.7 5.1 7.6 2.2 2.5 2.6 1.9 1.9
16,384 charAt 1.9 1.7 5.1 6.9 2.2 2.5 2.5 1.9 1.9
32,768 charAt 1.9 1.7 5.1 6.1 2.2 2.5 2.5 1.9 1.9
65,536 charAt 1.9 1.7 5.1 5.5 2.2 2.4 2.4 1.9 1.9
131,072 charAt 1.9 1.7 5.1 5.4 2.3 2.5 2.5 1.9 1.9
262,144 charAt 1.9 1.7 5.1 5.1 2.3 2.5 2.5 1.9 1.9
CÓDIGO DE PROGRAMA EJECUTABLE COMPLETO
(para probar en Java 7 y versiones anteriores, elimine las dos pruebas de secuencias)
import java.lang.reflect.Field;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Random;
import java.util.function.IntPredicate;
/**
* @author Saint Hill <http://stackoverflow.com/users/1584255/saint-hill>
*/
public final class TestStrings {
// we will not test strings longer than 512KM
final int MAX_STRING_SIZE = 1024 * 256;
// for each string size, we will do all the tests
// this many times
final int TRIES_PER_STRING_SIZE = 1000;
public static void main(String[] args) throws Exception {
new TestStrings().run();
}
void run() throws Exception {
// double the length of the data until it reaches MAX chars long
// 0,1,2,4,8,16,32,64,128,256 ...
final List<Integer> sizes = new ArrayList<>();
for (int n = 0; n <= MAX_STRING_SIZE; n = (n == 0 ? 1 : n * 2)) {
sizes.add(n);
}
// CREATE RANDOM (FOR SHUFFLING ORDER OF TESTS)
final Random random = new Random();
System.out.println("Rate in nanoseconds per character inspected.");
System.out.printf("==== FORWARDS (tries per size: %s) ==== \n", TRIES_PER_STRING_SIZE);
printHeadings(TRIES_PER_STRING_SIZE, random);
for (int size : sizes) {
reportResults(size, test(size, TRIES_PER_STRING_SIZE, random));
}
// reverse order or string sizes
Collections.reverse(sizes);
System.out.println("");
System.out.println("Rate in nanoseconds per character inspected.");
System.out.printf("==== BACKWARDS (tries per size: %s) ==== \n", TRIES_PER_STRING_SIZE);
printHeadings(TRIES_PER_STRING_SIZE, random);
for (int size : sizes) {
reportResults(size, test(size, TRIES_PER_STRING_SIZE, random));
}
}
///
///
/// METHODS OF CHECKING THE CONTENTS
/// OF A STRING. ALWAYS CHECKING FOR
/// WHITESPACE (CHAR <=' ')
///
///
// CHECK THE STRING CONTENTS
int charAtMethod1(final String data) {
final int len = data.length();
for (int i = 0; i < len; i++) {
if (data.charAt(i) <= ' ') {
doThrow();
}
}
return len;
}
// SAME AS ABOVE BUT USE String.length()
// instead of making a new final local int
int charAtMethod2(final String data) {
for (int i = 0; i < data.length(); i++) {
if (data.charAt(i) <= ' ') {
doThrow();
}
}
return data.length();
}
// USE new Java-8 String's IntStream
// pass it a PREDICATE to do the checking
int streamMethod(final String data, final IntPredicate predicate) {
if (data.chars().anyMatch(predicate)) {
doThrow();
}
return data.length();
}
// OH LA LA - GO PARALLEL!!!
int streamParallelMethod(final String data, IntPredicate predicate) {
if (data.chars().parallel().anyMatch(predicate)) {
doThrow();
}
return data.length();
}
// Re-fill a resuable char[] with the contents
// of the String's char[]
int reuseBuffMethod(final char[] reusable, final String data) {
final int len = data.length();
data.getChars(0, len, reusable, 0);
for (int i = 0; i < len; i++) {
if (reusable[i] <= ' ') {
doThrow();
}
}
return len;
}
// Obtain a new copy of char[] from String
int newMethod1(final String data) {
final int len = data.length();
final char[] copy = data.toCharArray();
for (int i = 0; i < len; i++) {
if (copy[i] <= ' ') {
doThrow();
}
}
return len;
}
// Obtain a new copy of char[] from String
// but use FOR-EACH
int newMethod2(final String data) {
for (final char c : data.toCharArray()) {
if (c <= ' ') {
doThrow();
}
}
return data.length();
}
// FANCY!
// OBTAIN FIELD FOR ACCESS TO THE STRING'S
// INTERNAL CHAR[]
int fieldMethod1(final Field field, final String data) {
try {
final char[] chars = (char[]) field.get(data);
final int len = chars.length;
for (int i = 0; i < len; i++) {
if (chars[i] <= ' ') {
doThrow();
}
}
return len;
} catch (Exception ex) {
throw new RuntimeException(ex);
}
}
// same as above but use FOR-EACH
int fieldMethod2(final Field field, final String data) {
final char[] chars;
try {
chars = (char[]) field.get(data);
} catch (Exception ex) {
throw new RuntimeException(ex);
}
for (final char c : chars) {
if (c <= ' ') {
doThrow();
}
}
return chars.length;
}
/**
*
* Make a list of tests. We will shuffle a copy of this list repeatedly
* while we repeat this test.
*
* @param data
* @return
*/
List<Jobber> makeTests(String data) throws Exception {
// make a list of tests
final List<Jobber> tests = new ArrayList<Jobber>();
tests.add(new Jobber("charAt1") {
int check() {
return charAtMethod1(data);
}
});
tests.add(new Jobber("charAt2") {
int check() {
return charAtMethod2(data);
}
});
tests.add(new Jobber("stream") {
final IntPredicate predicate = new IntPredicate() {
public boolean test(int value) {
return value <= ' ';
}
};
int check() {
return streamMethod(data, predicate);
}
});
tests.add(new Jobber("streamPar") {
final IntPredicate predicate = new IntPredicate() {
public boolean test(int value) {
return value <= ' ';
}
};
int check() {
return streamParallelMethod(data, predicate);
}
});
// Reusable char[] method
tests.add(new Jobber("reuse") {
final char[] cbuff = new char[MAX_STRING_SIZE];
int check() {
return reuseBuffMethod(cbuff, data);
}
});
// New char[] from String
tests.add(new Jobber("new1") {
int check() {
return newMethod1(data);
}
});
// New char[] from String
tests.add(new Jobber("new2") {
int check() {
return newMethod2(data);
}
});
// Use reflection for field access
tests.add(new Jobber("field1") {
final Field field;
{
field = String.class.getDeclaredField("value");
field.setAccessible(true);
}
int check() {
return fieldMethod1(field, data);
}
});
// Use reflection for field access
tests.add(new Jobber("field2") {
final Field field;
{
field = String.class.getDeclaredField("value");
field.setAccessible(true);
}
int check() {
return fieldMethod2(field, data);
}
});
return tests;
}
/**
* We use this class to keep track of test results
*/
abstract class Jobber {
final String name;
long nanos;
long chars;
long runs;
Jobber(String name) {
this.name = name;
}
abstract int check();
final double nanosPerChar() {
double charsPerRun = chars / runs;
long nanosPerRun = nanos / runs;
return charsPerRun == 0 ? nanosPerRun : nanosPerRun / charsPerRun;
}
final void run() {
runs++;
long time = System.nanoTime();
chars += check();
nanos += System.nanoTime() - time;
}
}
// MAKE A TEST STRING OF RANDOM CHARACTERS A-Z
private String makeTestString(int testSize, char start, char end) {
Random r = new Random();
char[] data = new char[testSize];
for (int i = 0; i < data.length; i++) {
data[i] = (char) (start + r.nextInt(end));
}
return new String(data);
}
// WE DO THIS IF WE FIND AN ILLEGAL CHARACTER IN THE STRING
public void doThrow() {
throw new RuntimeException("Bzzzt -- Illegal Character!!");
}
/**
* 1. get random string of correct length 2. get tests (List<Jobber>) 3.
* perform tests repeatedly, shuffling each time
*/
List<Jobber> test(int size, int tries, Random random) throws Exception {
String data = makeTestString(size, 'A', 'Z');
List<Jobber> tests = makeTests(data);
List<Jobber> copy = new ArrayList<>(tests);
while (tries-- > 0) {
Collections.shuffle(copy, random);
for (Jobber ti : copy) {
ti.run();
}
}
// check to make sure all char counts the same
long runs = tests.get(0).runs;
long count = tests.get(0).chars;
for (Jobber ti : tests) {
if (ti.runs != runs && ti.chars != count) {
throw new Exception("Char counts should match if all correct algorithms");
}
}
return tests;
}
private void printHeadings(final int TRIES_PER_STRING_SIZE, final Random random) throws Exception {
System.out.print(" Size");
for (Jobber ti : test(0, TRIES_PER_STRING_SIZE, random)) {
System.out.printf("%9s", ti.name);
}
System.out.println("");
}
private void reportResults(int size, List<Jobber> tests) {
System.out.printf("%6d", size);
for (Jobber ti : tests) {
System.out.printf("%,9.2f", ti.nanosPerChar());
}
System.out.println("");
}
}
for (char c : chars)
?