Esta pregunta se ha hecho antes hace poco más de tres años. Se dio una respuesta, sin embargo, encontré un problema técnico en la solución.
El código a continuación está en R. Lo porté a otro idioma, sin embargo, probé el código original directamente en R para asegurarme de que el problema no estaba en mi portabilidad.
sunPosition <- function(year, month, day, hour=12, min=0, sec=0,
lat=46.5, long=6.5) {
twopi <- 2 * pi
deg2rad <- pi / 180
# Get day of the year, e.g. Feb 1 = 32, Mar 1 = 61 on leap years
month.days <- c(0,31,28,31,30,31,30,31,31,30,31,30)
day <- day + cumsum(month.days)[month]
leapdays <- year %% 4 == 0 & (year %% 400 == 0 | year %% 100 != 0) & day >= 60
day[leapdays] <- day[leapdays] + 1
# Get Julian date - 2400000
hour <- hour + min / 60 + sec / 3600 # hour plus fraction
delta <- year - 1949
leap <- trunc(delta / 4) # former leapyears
jd <- 32916.5 + delta * 365 + leap + day + hour / 24
# The input to the Atronomer's almanach is the difference between
# the Julian date and JD 2451545.0 (noon, 1 January 2000)
time <- jd - 51545.
# Ecliptic coordinates
# Mean longitude
mnlong <- 280.460 + .9856474 * time
mnlong <- mnlong %% 360
mnlong[mnlong < 0] <- mnlong[mnlong < 0] + 360
# Mean anomaly
mnanom <- 357.528 + .9856003 * time
mnanom <- mnanom %% 360
mnanom[mnanom < 0] <- mnanom[mnanom < 0] + 360
mnanom <- mnanom * deg2rad
# Ecliptic longitude and obliquity of ecliptic
eclong <- mnlong + 1.915 * sin(mnanom) + 0.020 * sin(2 * mnanom)
eclong <- eclong %% 360
eclong[eclong < 0] <- eclong[eclong < 0] + 360
oblqec <- 23.429 - 0.0000004 * time
eclong <- eclong * deg2rad
oblqec <- oblqec * deg2rad
# Celestial coordinates
# Right ascension and declination
num <- cos(oblqec) * sin(eclong)
den <- cos(eclong)
ra <- atan(num / den)
ra[den < 0] <- ra[den < 0] + pi
ra[den >= 0 & num < 0] <- ra[den >= 0 & num < 0] + twopi
dec <- asin(sin(oblqec) * sin(eclong))
# Local coordinates
# Greenwich mean sidereal time
gmst <- 6.697375 + .0657098242 * time + hour
gmst <- gmst %% 24
gmst[gmst < 0] <- gmst[gmst < 0] + 24.
# Local mean sidereal time
lmst <- gmst + long / 15.
lmst <- lmst %% 24.
lmst[lmst < 0] <- lmst[lmst < 0] + 24.
lmst <- lmst * 15. * deg2rad
# Hour angle
ha <- lmst - ra
ha[ha < -pi] <- ha[ha < -pi] + twopi
ha[ha > pi] <- ha[ha > pi] - twopi
# Latitude to radians
lat <- lat * deg2rad
# Azimuth and elevation
el <- asin(sin(dec) * sin(lat) + cos(dec) * cos(lat) * cos(ha))
az <- asin(-cos(dec) * sin(ha) / cos(el))
elc <- asin(sin(dec) / sin(lat))
az[el >= elc] <- pi - az[el >= elc]
az[el <= elc & ha > 0] <- az[el <= elc & ha > 0] + twopi
el <- el / deg2rad
az <- az / deg2rad
lat <- lat / deg2rad
return(list(elevation=el, azimuth=az))
}
El problema al que me golpeo es que el azimut que devuelve parece incorrecto. Por ejemplo, si ejecuto la función en el solsticio de verano (sur) a las 12:00 para las ubicaciones 0ºE y 41ºS, 3ºS, 3ºN y 41ºN:
> sunPosition(2012,12,22,12,0,0,-41,0)
$elevation
[1] 72.42113
$azimuth
[1] 180.9211
> sunPosition(2012,12,22,12,0,0,-3,0)
$elevation
[1] 69.57493
$azimuth
[1] -0.79713
Warning message:
In asin(sin(dec)/sin(lat)) : NaNs produced
> sunPosition(2012,12,22,12,0,0,3,0)
$elevation
[1] 63.57538
$azimuth
[1] -0.6250971
Warning message:
In asin(sin(dec)/sin(lat)) : NaNs produced
> sunPosition(2012,12,22,12,0,0,41,0)
$elevation
[1] 25.57642
$azimuth
[1] 180.3084
Estos números simplemente no parecen correctos. La elevación con la que estoy contento: las dos primeras deberían ser aproximadamente iguales, la tercera un poco más baja y la cuarta mucho más baja. Sin embargo, el primer acimut debería estar aproximadamente al norte, mientras que el número que da es todo lo contrario. Los tres restantes deben apuntar aproximadamente hacia el sur, sin embargo, solo el último lo hace. Los dos en el punto medio justo al norte, nuevamente 180º hacia afuera.
Como puede ver, también hay un par de errores que se activan con las latitudes bajas (cierre el ecuador)
Creo que la falla está en esta sección, y el error se activa en la tercera línea (comenzando con elc
).
# Azimuth and elevation
el <- asin(sin(dec) * sin(lat) + cos(dec) * cos(lat) * cos(ha))
az <- asin(-cos(dec) * sin(ha) / cos(el))
elc <- asin(sin(dec) / sin(lat))
az[el >= elc] <- pi - az[el >= elc]
az[el <= elc & ha > 0] <- az[el <= elc & ha > 0] + twopi
Busqué en Google y encontré un fragmento de código similar en C, convertido a R, la línea que usa para calcular el acimut sería algo así como
az <- atan(sin(ha) / (cos(ha) * sin(lat) - tan(dec) * cos(lat)))
La salida aquí parece dirigirse en la dirección correcta, pero no puedo hacer que me dé la respuesta correcta todo el tiempo cuando se convierte de nuevo a grados.
Una corrección del código (sospecho que son solo las pocas líneas de arriba) para que calcule el acimut correcto sería fantástico.