Hice una red neuronal LSTM (RNN) con aprendizaje supervisado para la predicción del stock de datos. El problema es ¿por qué predice mal en sus propios datos de entrenamiento? (nota: ejemplo reproducible a continuación)
Creé un modelo simple para predecir el precio de las acciones en los próximos 5 días:
model = Sequential()
model.add(LSTM(32, activation='sigmoid', input_shape=(x_train.shape[1], x_train.shape[2])))
model.add(Dense(y_train.shape[1]))
model.compile(optimizer='adam', loss='mse')
es = EarlyStopping(monitor='val_loss', patience=3, restore_best_weights=True)
model.fit(x_train, y_train, batch_size=64, epochs=25, validation_data=(x_test, y_test), callbacks=[es])
Los resultados correctos están en y_test
(5 valores), por lo que los trenes modelo, mirando hacia atrás 90 días anteriores y luego restaurando los pesos del mejor val_loss=0.0030
resultado ( ) con patience=3
:
Train on 396 samples, validate on 1 samples
Epoch 1/25
396/396 [==============================] - 1s 2ms/step - loss: 0.1322 - val_loss: 0.0299
Epoch 2/25
396/396 [==============================] - 0s 402us/step - loss: 0.0478 - val_loss: 0.0129
Epoch 3/25
396/396 [==============================] - 0s 397us/step - loss: 0.0385 - val_loss: 0.0178
Epoch 4/25
396/396 [==============================] - 0s 399us/step - loss: 0.0398 - val_loss: 0.0078
Epoch 5/25
396/396 [==============================] - 0s 391us/step - loss: 0.0343 - val_loss: 0.0030
Epoch 6/25
396/396 [==============================] - 0s 391us/step - loss: 0.0318 - val_loss: 0.0047
Epoch 7/25
396/396 [==============================] - 0s 389us/step - loss: 0.0308 - val_loss: 0.0043
Epoch 8/25
396/396 [==============================] - 0s 393us/step - loss: 0.0292 - val_loss: 0.0056
El resultado de la predicción es bastante impresionante, ¿no?
Esto se debe a que el algoritmo restauró los mejores pesos de la época # 5. Okey, ahora guardemos este modelo en el .h5
archivo, retrocedamos -10 días y pronostiquemos los últimos 5 días (en el primer ejemplo, hicimos el modelo y lo validamos del 17 al 23 de abril, incluidos los fines de semana libres, ahora vamos a probar el 2 al 8 de abril). Resultado:
Muestra una dirección absolutamente equivocada. Como vemos, eso se debe a que el modelo fue entrenado y tomó la mejor época para la validación establecida el 17-23 de abril, pero no el 2-8. Si trato de entrenar más, jugando con qué época elegir, haga lo que haga, siempre hay muchos intervalos de tiempo en el pasado que tienen una predicción incorrecta.
¿Por qué el modelo muestra resultados incorrectos en sus propios datos entrenados? Entrené datos, debe recordar cómo predecir datos en este conjunto, pero predice mal. Lo que también probé:
- Utilice grandes conjuntos de datos con más de 50k filas, precios de acciones de 20 años, agregando más o menos características
- Cree diferentes tipos de modelos, como agregar más capas ocultas, diferentes tamaños de lote, diferentes activaciones de capas, abandonos, normalización de baterías
- Cree una devolución de llamada personalizada de EarlyStopping, obtenga val_loss promedio de muchos conjuntos de datos de validación y elija el mejor
Tal vez extraño algo? ¿Qué puedo mejorar?
Aquí hay un ejemplo muy simple y reproducible . yfinance
descarga datos de stock de S&P 500.
"""python 3.7.7
tensorflow 2.1.0
keras 2.3.1"""
import numpy as np
import pandas as pd
from keras.callbacks import EarlyStopping, Callback
from keras.models import Model, Sequential, load_model
from keras.layers import Dense, Dropout, LSTM, BatchNormalization
from sklearn.preprocessing import MinMaxScaler
import plotly.graph_objects as go
import yfinance as yf
np.random.seed(4)
num_prediction = 5
look_back = 90
new_s_h5 = True # change it to False when you created model and want test on other past dates
df = yf.download(tickers="^GSPC", start='2018-05-06', end='2020-04-24', interval="1d")
data = df.filter(['Close', 'High', 'Low', 'Volume'])
# drop last N days to validate saved model on past
df.drop(df.tail(0).index, inplace=True)
print(df)
class EarlyStoppingCust(Callback):
def __init__(self, patience=0, verbose=0, validation_sets=None, restore_best_weights=False):
super(EarlyStoppingCust, self).__init__()
self.patience = patience
self.verbose = verbose
self.wait = 0
self.stopped_epoch = 0
self.restore_best_weights = restore_best_weights
self.best_weights = None
self.validation_sets = validation_sets
def on_train_begin(self, logs=None):
self.wait = 0
self.stopped_epoch = 0
self.best_avg_loss = (np.Inf, 0)
def on_epoch_end(self, epoch, logs=None):
loss_ = 0
for i, validation_set in enumerate(self.validation_sets):
predicted = self.model.predict(validation_set[0])
loss = self.model.evaluate(validation_set[0], validation_set[1], verbose = 0)
loss_ += loss
if self.verbose > 0:
print('val' + str(i + 1) + '_loss: %.5f' % loss)
avg_loss = loss_ / len(self.validation_sets)
print('avg_loss: %.5f' % avg_loss)
if self.best_avg_loss[0] > avg_loss:
self.best_avg_loss = (avg_loss, epoch + 1)
self.wait = 0
if self.restore_best_weights:
print('new best epoch = %d' % (epoch + 1))
self.best_weights = self.model.get_weights()
else:
self.wait += 1
if self.wait >= self.patience or self.params['epochs'] == epoch + 1:
self.stopped_epoch = epoch
self.model.stop_training = True
if self.restore_best_weights:
if self.verbose > 0:
print('Restoring model weights from the end of the best epoch')
self.model.set_weights(self.best_weights)
def on_train_end(self, logs=None):
print('best_avg_loss: %.5f (#%d)' % (self.best_avg_loss[0], self.best_avg_loss[1]))
def multivariate_data(dataset, target, start_index, end_index, history_size, target_size, step, single_step=False):
data = []
labels = []
start_index = start_index + history_size
if end_index is None:
end_index = len(dataset) - target_size
for i in range(start_index, end_index):
indices = range(i-history_size, i, step)
data.append(dataset[indices])
if single_step:
labels.append(target[i+target_size])
else:
labels.append(target[i:i+target_size])
return np.array(data), np.array(labels)
def transform_predicted(pr):
pr = pr.reshape(pr.shape[1], -1)
z = np.zeros((pr.shape[0], x_train.shape[2] - 1), dtype=pr.dtype)
pr = np.append(pr, z, axis=1)
pr = scaler.inverse_transform(pr)
pr = pr[:, 0]
return pr
step = 1
# creating datasets with look back
scaler = MinMaxScaler()
df_normalized = scaler.fit_transform(df.values)
dataset = df_normalized[:-num_prediction]
x_train, y_train = multivariate_data(dataset, dataset[:, 0], 0,len(dataset) - num_prediction + 1, look_back, num_prediction, step)
indices = range(len(dataset)-look_back, len(dataset), step)
x_test = np.array(dataset[indices])
x_test = np.expand_dims(x_test, axis=0)
y_test = np.expand_dims(df_normalized[-num_prediction:, 0], axis=0)
# creating past datasets to validate with EarlyStoppingCust
number_validates = 50
step_past = 5
validation_sets = [(x_test, y_test)]
for i in range(1, number_validates * step_past + 1, step_past):
indices = range(len(dataset)-look_back-i, len(dataset)-i, step)
x_t = np.array(dataset[indices])
x_t = np.expand_dims(x_t, axis=0)
y_t = np.expand_dims(df_normalized[-num_prediction-i:len(df_normalized)-i, 0], axis=0)
validation_sets.append((x_t, y_t))
if new_s_h5:
model = Sequential()
model.add(LSTM(32, return_sequences=False, activation = 'sigmoid', input_shape=(x_train.shape[1], x_train.shape[2])))
# model.add(Dropout(0.2))
# model.add(BatchNormalization())
# model.add(LSTM(units = 16))
model.add(Dense(y_train.shape[1]))
model.compile(optimizer = 'adam', loss = 'mse')
# EarlyStoppingCust is custom callback to validate each validation_sets and get average
# it takes epoch with best "best_avg" value
# es = EarlyStoppingCust(patience = 3, restore_best_weights = True, validation_sets = validation_sets, verbose = 1)
# or there is keras extension with built-in EarlyStopping, but it validates only 1 set that you pass through fit()
es = EarlyStopping(monitor = 'val_loss', patience = 3, restore_best_weights = True)
model.fit(x_train, y_train, batch_size = 64, epochs = 25, shuffle = True, validation_data = (x_test, y_test), callbacks = [es])
model.save('s.h5')
else:
model = load_model('s.h5')
predicted = model.predict(x_test)
predicted = transform_predicted(predicted)
print('predicted', predicted)
print('real', df.iloc[-num_prediction:, 0].values)
print('val_loss: %.5f' % (model.evaluate(x_test, y_test, verbose=0)))
fig = go.Figure()
fig.add_trace(go.Scatter(
x = df.index[-60:],
y = df.iloc[-60:,0],
mode='lines+markers',
name='real',
line=dict(color='#ff9800', width=1)
))
fig.add_trace(go.Scatter(
x = df.index[-num_prediction:],
y = predicted,
mode='lines+markers',
name='predict',
line=dict(color='#2196f3', width=1)
))
fig.update_layout(template='plotly_dark', hovermode='x', spikedistance=-1, hoverlabel=dict(font_size=16))
fig.update_xaxes(showspikes=True)
fig.update_yaxes(showspikes=True)
fig.show()
df.drop(df.tail(10).index, inplace=True)
, mostró el mismo mal resultado que tenía.