Cómo pivotar el marco de datos que consiste en una columna con una sección y una subsección en R


12

Tengo un marco de datos mencionado a continuación:

structure(
  list(ID = c("P-1", " P-1", "P-1", "P-2", "P-3", "P-4", "P-5", "P-6", "P-7",
              "P-8"),
       Date = c("2020-03-16 12:11:33", "2020-03-16 13:16:04",
                "2020-03-16 06:13:55", "2020-03-16 10:03:43",
                "2020-03-16 12:37:09", "2020-03-16 06:40:24",
                "2020-03-16 09:46:45", "2020-03-16 12:07:44",
                "2020-03-16 14:09:51", "2020-03-16 09:19:23"),
       Status = c("SA", "SA", "SA", "RE", "RE", "RE", "RE", "XA", "XA", "XA"),
       Flag = c("L", "L", "L", NA, "K", "J", NA, NA, "H", "G"),
       Value = c(5929.81, 5929.81, 5929.81, NA, 6969.33, 740.08, NA, NA, 1524.8,
                 NA),
       Flag2 = c("CL", "CL", "CL", NA, "RY", "", NA, NA, "", NA),
       Flag3 = c(NA, NA, NA, NA, "RI", "PO", NA, "SS", "DDP", NA)),
  .Names=c("ID", "Date", "Status", "Flag", "Value", "Flag2", "Flag3"),
  row.names=c(NA, 10L), class="data.frame")

Estoy usando el código mencionado a continuación:

    df %>% mutate(L = ifelse(Flag == "L",1,0),
                  K = ifelse(Flag == "K",1,0),
                  # etc for Flag) %>%
      mutate(sub_status = NA) %>%
      mutate(sub_status = ifelse(!is.na(Flag2) & Flag3 == 0, "a", sub_status),
             sub_status = ifelse(is.na(Flag2) & Flag3 != 0, "b", sub_status),
             # etc for sub-status) %>%
      mutate(value_class = ifelse(0 <= Value & Value <= 15000, "0-15000",
                                  "15000-50000")) %>%
      group_by(Date, status, sub_status, value_class) %>%
      summarise(L = sum(L),
                K = sum(K),
                # etc
                count = n())

Lo que me proporciona el siguiente resultado:

    Date         Status  sub_status   value_class G H I J K L NA Count
    2020-03-20   SA      a            0-15000     0 0 0 0 1 1 0  2
    2020-03-20   SA      b            0-15000     0 0 0 0 1 0 0  1
    ................
    ................

Quiero obtener el siguiente resultado utilizando DF, donde la Statuscolumna tiene 3 valores distintos y Flag2tiene valores o [nulo] o NA y finalmente la Flag3columna tiene 7 valores distintos con [nulo] o NA. Para un distinto IDtenemos entrada múltiple de Flag3columna.

Necesito crear el siguiente marco de datos, creando un grupo 3 basado en Valuecomo 0-15000, 15000-50000.

  • Si para una ID distinta Flag2tiene algún valor distinto de 0 o [nulo] / NA pero Flag3tiene valor 0 o [nulo] / NA, entonces sería a.
  • Si para una ID distinta Flag3tiene algún valor distinto de 0 o [nulo] / NA pero Flag2tiene valor 0 o [nulo] / NA, entonces seríab
  • Si para una ID distinta tanto Flag2& Flag3tiene algún valor distinto de 0 o [Nulo] / NA, entonces seríac
  • Si para un ID distinto tanto Flag2& Flag3tiene valor 0 o [Nulo] / NA, seríad

Quiero organizar el datafrmae mencionado anteriormente en la siguiente estructura con percentyTotal columna.

He mencionado que el porcentaje 2/5muestra que el estado se dividiría por el Total, mientras sub_statusque se dividiría por sus respectivos Status.

16/03/2020         0 - 15000                    15000 - 50000
Status  count   percent  L K J H G [Null]    count   percent  L K J H G [Null]   Total
SA        1 1/8 (12.50%) 1 0 0 0 0   0         0       -      0 0 0 0 0    0       1
a         1 1/1(100.00%) 1 0 0 0 0   0         0       -      0 0 0 0 0    0       1
b         0       -      0 0 0 0 0   0         0       -      0 0 0 0 0    0       0
c         0       -      1 0 0 0 0   0         0       -      0 0 0 0 0    0       0
d         0       -      0 0 0 0 0   0         0       -      0 0 0 0 0    0       0
RE        4      50.00%  0 1 1 0 0   2         0       -      0 0 0 0 0    0       4
a         0        -     0 0 0 0 0   0         0       -      0 0 0 0 0    0       0
b         1      25.00%  0 0 1 0 0   1         0       -      0 0 0 0 0    0       1
c         1      25.00%  0 1 0 0 0   1         0       -      0 0 0 0 0    0       1
d         2      50.00%  0 0 0 0 0   2         0       -      0 0 0 0 0    0       2
XA        3      37.50%  0 0 0 1 1   1         0       -      0 0 0 0 0    0       3
a         0        -     0 0 0 0 0   0         0       -      0 0 0 0 0    0       0
b         2      66.67%  0 0 0 1 0   1         0       -      0 0 0 0 0    0       2
c         0        -     0 0 0 0 0   0         0       -      0 0 0 0 0    0       0
d         1      33.33%  0 0 0 0 1   0         0       -      0 0 0 0 0    0       1
Total     8     100.00%  1 1 0 0 1   3         0       -      0 0 0 0 0    0       8

He mencionado la salida requerida basada en la última fecha que es 16/03/2020, si el marco de datos no tiene la última fecha según startdate mantener todo el valor 0 en el marco de datos de salida. La columna de porcentaje es solo para la referencia, habrá valores de porcentaje calculados.

Además, quiero mantener la estructura estática. Por ejemplo, si alguno de los parámetros no está presente durante un día, la estructura de salida sería la misma con el valor 0.

Por ejemplo, supongamos que date 17/03/2020no tiene ninguna fila con status SAo sub_status, cel marcador de posición que estará allí en la salida con el valor as 0.


@akrun: la columna de porcentaje que he mantenido 2/5solo para el propósito de representación. Habría un valor porcentual solo con 2 puntos decimales con signo de porcentaje.
user9211845

@akrun: sugiera si la salida requerida es posible a través de R :(
user9211845

su entrada de datos es de 10 filas, pero se espera que sea más. ¿Se espera lo basado en el ejemplo de entrada
Akrun

@akrun: Lo siento, pero el resultado es solo para la representación visual. Necesito entender el enfoque para obtener ese resultado.
user9211845

1
¿Podría comenzar con el dputconjunto de datos que le gusta? Es el tercer bloque de código. El código anterior no parece relevante ya que parece contento con la salida.
Cole

Respuestas:


3

Con suerte, eso será suficiente para comenzar, para ir más lejos, necesitaré una salida esperada que parezca que proviene de R, y más explicaciones sobre cómo se calculan las variables.

library(tidyverse)
df <- structure(
  list(ID = c("P-1", " P-1", "P-1", "P-2", "P-3", "P-4", "P-5", "P-6", "P-7",
              "P-8"),
       Date = c("2020-03-16 12:11:33", "2020-03-16 13:16:04",
                "2020-03-16 06:13:55", "2020-03-16 10:03:43",
                "2020-03-16 12:37:09", "2020-03-16 06:40:24",
                "2020-03-16 09:46:45", "2020-03-16 12:07:44",
                "2020-03-16 14:09:51", "2020-03-16 09:19:23"),
       Status = c("SA", "SA", "SA", "RE", "RE", "RE", "RE", "XA", "XA", "XA"),
       Flag = c("L", "L", "L", NA, "K", "J", NA, NA, "H", "G"),
       Value = c(5929.81, 5929.81, 5929.81, NA, 6969.33, 740.08, NA, NA, 1524.8,
                 NA),
       Flag2 = c("CL", "CL", "CL", NA, "RY", "", NA, NA, "", NA),
       Flag3 = c(NA, NA, NA, NA, "RI", "PO", NA, "SS", "DDP", NA)),
  .Names=c("ID", "Date", "Status", "Flag", "Value", "Flag2", "Flag3"),
  row.names=c(NA, 10L), class="data.frame")

df2 <- df %>%
  mutate(
    # add variables
    Value = ifelse(0 <= Value & Value <= 15000, "0-15000", "15000-50000"),
    substatus = case_when(
      !is.na(Flag2) & is.na(Flag3) ~ "a",
      !is.na(Flag3) & is.na(Flag2) ~ "b",
      !is.na(Flag3) & !is.na(Flag2) ~ "c",
      TRUE ~ "d"),
    # make Date an actual date rather than a timestamp
    Date = as.Date(Date),
    # remove obsolete columns
    Flag2 = NULL,
    Flag3 = NULL,
    ID = NULL,
    # renames NAs into the name of the desired column
    Flag = ifelse(is.na(Flag), "[Null]", Flag),
    # create column of 1 for pivot
    temp = 1,
    # and row id
    id = row_number()
    ) %>%
  # create new columns L K etc, this also drops the Flag col
  pivot_wider(names_from = "Flag", values_from = "temp", values_fill = list(temp=0)) %>%
  # move `[Null]` column to the end
  select(everything(), -`[Null]`, `[Null]`) %>%
  mutate(
    id = NULL,
    count = 1,
    Total = rowSums(select(., L:`[Null]`))) 
df2
#> # A tibble: 10 x 12
#>    Date       Status Value substatus     L     K     J     H     G `[Null]`
#>    <date>     <chr>  <chr> <chr>     <dbl> <dbl> <dbl> <dbl> <dbl>    <dbl>
#>  1 2020-03-16 SA     0-15~ a             1     0     0     0     0        0
#>  2 2020-03-16 SA     0-15~ a             1     0     0     0     0        0
#>  3 2020-03-16 SA     0-15~ a             1     0     0     0     0        0
#>  4 2020-03-16 RE     <NA>  d             0     0     0     0     0        1
#>  5 2020-03-16 RE     0-15~ c             0     1     0     0     0        0
#>  6 2020-03-16 RE     0-15~ c             0     0     1     0     0        0
#>  7 2020-03-16 RE     <NA>  d             0     0     0     0     0        1
#>  8 2020-03-16 XA     <NA>  b             0     0     0     0     0        1
#>  9 2020-03-16 XA     0-15~ c             0     0     0     1     0        0
#> 10 2020-03-16 XA     <NA>  d             0     0     0     0     1        0
#> # ... with 2 more variables: count <dbl>, Total <dbl>

# As you didn't tell what to do with NA values so I left them as NA 

bind_rows(
  df2 %>%
    # add missing combinations of abcd
    complete(nesting(Date, Status, Value), substatus) %>%
    group_by(Date, Value, Status, substatus) %>% 
    summarize_all(~sum(., na.rm=TRUE)) %>%
    group_by(Status, Value) %>%
    mutate(percent = paste(round(100 * Total / sum(Total), 2), "%")) %>%
    ungroup(),
  df2 %>% 
    mutate(substatus = Status, Status = paste0(Status, "_")) %>%
    group_by(Date, Value, Status, substatus) %>% 
    mutate(count = n()) %>%
    group_by(count, add = TRUE) %>%
    summarize_all(~sum(., na.rm=TRUE)) %>%
    group_by(Value) %>%
    mutate(percent = paste(round(100 * Total / sum(Total), 2), "%"))
) %>%
  arrange(Date, Value, desc(Status)) %>%
  mutate(Status = NULL) %>%
  rename(Status = substatus) %>%
  print(n=Inf)
#> # A tibble: 25 x 12
#>    Date       Value Status     L     K     J     H     G `[Null]` count Total
#>    <date>     <chr> <chr>  <dbl> <dbl> <dbl> <dbl> <dbl>    <dbl> <dbl> <dbl>
#>  1 2020-03-16 0-15~ XA         0     0     0     1     0        0     1     1
#>  2 2020-03-16 0-15~ a          0     0     0     0     0        0     0     0
#>  3 2020-03-16 0-15~ b          0     0     0     0     0        0     0     0
#>  4 2020-03-16 0-15~ c          0     0     0     1     0        0     1     1
#>  5 2020-03-16 0-15~ d          0     0     0     0     0        0     0     0
#>  6 2020-03-16 0-15~ SA         3     0     0     0     0        0     3     3
#>  7 2020-03-16 0-15~ a          3     0     0     0     0        0     3     3
#>  8 2020-03-16 0-15~ b          0     0     0     0     0        0     0     0
#>  9 2020-03-16 0-15~ c          0     0     0     0     0        0     0     0
#> 10 2020-03-16 0-15~ d          0     0     0     0     0        0     0     0
#> 11 2020-03-16 0-15~ RE         0     1     1     0     0        0     2     2
#> 12 2020-03-16 0-15~ a          0     0     0     0     0        0     0     0
#> 13 2020-03-16 0-15~ b          0     0     0     0     0        0     0     0
#> 14 2020-03-16 0-15~ c          0     1     1     0     0        0     2     2
#> 15 2020-03-16 0-15~ d          0     0     0     0     0        0     0     0
#> 16 2020-03-16 <NA>  XA         0     0     0     0     1        1     2     2
#> 17 2020-03-16 <NA>  a          0     0     0     0     0        0     0     0
#> 18 2020-03-16 <NA>  b          0     0     0     0     0        1     1     1
#> 19 2020-03-16 <NA>  c          0     0     0     0     0        0     0     0
#> 20 2020-03-16 <NA>  d          0     0     0     0     1        0     1     1
#> 21 2020-03-16 <NA>  RE         0     0     0     0     0        2     2     2
#> 22 2020-03-16 <NA>  a          0     0     0     0     0        0     0     0
#> 23 2020-03-16 <NA>  b          0     0     0     0     0        0     0     0
#> 24 2020-03-16 <NA>  c          0     0     0     0     0        0     0     0
#> 25 2020-03-16 <NA>  d          0     0     0     0     0        2     2     2
#> # ... with 1 more variable: percent <chr>
Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.