¿Hay alguna manera en matplotlib para verificar qué artistas están en el área de los ejes que se muestra actualmente?


9

Tengo un programa con una figura interactiva donde ocasionalmente se dibujan muchos artistas. En esta figura, también puede hacer zoom y desplazarse con el mouse. Sin embargo, el rendimiento durante el zoom de una panorámica no es muy bueno porque cada artista siempre se redibuja. ¿Hay alguna manera de verificar qué artistas están en el área que se muestra actualmente y solo volver a dibujarlos? (En el ejemplo a continuación, el rendimiento sigue siendo relativamente bueno, pero puede empeorar arbitrariamente al usar artistas más o más complejos)

Tuve un problema de rendimiento similar con el hovermétodo que siempre que se llamaba se ejecutaba canvas.draw()al final. Pero como puede ver, encontré una solución clara para eso haciendo uso del almacenamiento en caché y restaurando el fondo de los ejes (basado en esto ). Esto mejoró significativamente el rendimiento y ahora, incluso con muchos artistas, funciona muy bien. Tal vez hay una forma similar de hacer esto, pero para el panyzoom método ?

Lo sentimos por el ejemplo de código largo, la mayor parte no es directamente relevante para la pregunta, pero es necesario para un ejemplo de trabajo para resaltar el problema.

EDITAR

Actualicé el MWE a algo que es más representativo de mi código real.

import numpy as np
import numpy as np
import sys
import matplotlib.pyplot as plt
from matplotlib.backends.backend_qt5agg import \
    FigureCanvasQTAgg
import matplotlib.patheffects as PathEffects
from matplotlib.text import Annotation
from matplotlib.collections import LineCollection

from PyQt5.QtWidgets import QApplication, QVBoxLayout, QDialog


def check_limits(base_xlim, base_ylim, new_xlim, new_ylim):
    if new_xlim[0] < base_xlim[0]:
        overlap = base_xlim[0] - new_xlim[0]
        new_xlim[0] = base_xlim[0]
        if new_xlim[1] + overlap > base_xlim[1]:
            new_xlim[1] = base_xlim[1]
        else:
            new_xlim[1] += overlap
    if new_xlim[1] > base_xlim[1]:
        overlap = new_xlim[1] - base_xlim[1]
        new_xlim[1] = base_xlim[1]
        if new_xlim[0] - overlap < base_xlim[0]:
            new_xlim[0] = base_xlim[0]
        else:
            new_xlim[0] -= overlap
    if new_ylim[1] < base_ylim[1]:
        overlap = base_ylim[1] - new_ylim[1]
        new_ylim[1] = base_ylim[1]
        if new_ylim[0] + overlap > base_ylim[0]:
            new_ylim[0] = base_ylim[0]
        else:
            new_ylim[0] += overlap
    if new_ylim[0] > base_ylim[0]:
        overlap = new_ylim[0] - base_ylim[0]
        new_ylim[0] = base_ylim[0]
        if new_ylim[1] - overlap < base_ylim[1]:
            new_ylim[1] = base_ylim[1]
        else:
            new_ylim[1] -= overlap

    return new_xlim, new_ylim


class FigureCanvas(FigureCanvasQTAgg):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.bg_cache = None

    def draw(self):
        ax = self.figure.axes[0]
        hid_annotation = False
        if ax.annot.get_visible():
            ax.annot.set_visible(False)
            hid_annotation = True
        hid_highlight = False
        if ax.last_artist:
            ax.last_artist.set_path_effects([PathEffects.Normal()])
            hid_highlight = True
        super().draw()
        self.bg_cache = self.copy_from_bbox(self.figure.bbox)
        if hid_highlight:
            ax.last_artist.set_path_effects(
                [PathEffects.withStroke(
                    linewidth=7, foreground="c", alpha=0.4
                )]
            )
            ax.draw_artist(ax.last_artist)
        if hid_annotation:
            ax.annot.set_visible(True)
            ax.draw_artist(ax.annot)

        if hid_highlight:
            self.update()


def position(t_, coeff, var=0.1):
    x_ = np.random.normal(np.polyval(coeff[:, 0], t_), var)
    y_ = np.random.normal(np.polyval(coeff[:, 1], t_), var)

    return x_, y_


class Data:
    def __init__(self, times):
        self.length = np.random.randint(1, 20)
        self.t = np.sort(
            np.random.choice(times, size=self.length, replace=False)
        )
        self.vel = [np.random.uniform(-2, 2), np.random.uniform(-2, 2)]
        self.accel = [np.random.uniform(-0.01, 0.01), np.random.uniform(-0.01,
                                                                      0.01)]
        x0, y0 = np.random.uniform(0, 1000, 2)
        self.x, self.y = position(
            self.t, np.array([self.accel, self.vel, [x0, y0]])
        )


class Test(QDialog):
    def __init__(self):
        super().__init__()
        self.fig, self.ax = plt.subplots()
        self.canvas = FigureCanvas(self.fig)
        self.artists = []
        self.zoom_factor = 1.5
        self.x_press = None
        self.y_press = None
        self.annot = Annotation(
            "", xy=(0, 0), xytext=(-20, 20), textcoords="offset points",
            bbox=dict(boxstyle="round", fc="w", alpha=0.7), color='black',
            arrowprops=dict(arrowstyle="->"), zorder=6, visible=False,
            annotation_clip=False, in_layout=False,
        )
        self.annot.set_clip_on(False)
        setattr(self.ax, 'annot', self.annot)
        self.ax.add_artist(self.annot)
        self.last_artist = None
        setattr(self.ax, 'last_artist', self.last_artist)

        self.image = np.random.uniform(0, 100, 1000000).reshape((1000, 1000))
        self.ax.imshow(self.image, cmap='gray', interpolation='nearest')
        self.times = np.linspace(0, 20)
        for i in range(1000):
            data = Data(self.times)
            points = np.array([data.x, data.y]).T.reshape(-1, 1, 2)
            segments = np.concatenate([points[:-1], points[1:]], axis=1)
            z = np.linspace(0, 1, data.length)
            norm = plt.Normalize(z.min(), z.max())
            lc = LineCollection(
                segments, cmap='autumn', norm=norm, alpha=1,
                linewidths=2, picker=8, capstyle='round',
                joinstyle='round'
            )
            setattr(lc, 'data_id', i)
            lc.set_array(z)
            self.ax.add_artist(lc)
            self.artists.append(lc)
        self.default_xlim = self.ax.get_xlim()
        self.default_ylim = self.ax.get_ylim()

        self.canvas.draw()

        self.cid_motion = self.fig.canvas.mpl_connect(
            'motion_notify_event', self.motion_event
        )
        self.cid_button = self.fig.canvas.mpl_connect(
            'button_press_event', self.pan_press
        )
        self.cid_zoom = self.fig.canvas.mpl_connect(
            'scroll_event', self.zoom
        )

        layout = QVBoxLayout()
        layout.addWidget(self.canvas)
        self.setLayout(layout)

    def zoom(self, event):
        if event.inaxes == self.ax:
            scale_factor = np.power(self.zoom_factor, -event.step)
            xdata = event.xdata
            ydata = event.ydata
            cur_xlim = self.ax.get_xlim()
            cur_ylim = self.ax.get_ylim()
            x_left = xdata - cur_xlim[0]
            x_right = cur_xlim[1] - xdata
            y_top = ydata - cur_ylim[0]
            y_bottom = cur_ylim[1] - ydata

            new_xlim = [
                xdata - x_left * scale_factor, xdata + x_right * scale_factor
            ]
            new_ylim = [
                ydata - y_top * scale_factor, ydata + y_bottom * scale_factor
            ]
            # intercept new plot parameters if they are out of bounds
            new_xlim, new_ylim = check_limits(
                self.default_xlim, self.default_ylim, new_xlim, new_ylim
            )

            if cur_xlim != tuple(new_xlim) or cur_ylim != tuple(new_ylim):
                self.ax.set_xlim(new_xlim)
                self.ax.set_ylim(new_ylim)

                self.canvas.draw_idle()

    def motion_event(self, event):
        if event.button == 1:
            self.pan_move(event)
        else:
            self.hover(event)

    def pan_press(self, event):
        if event.inaxes == self.ax:
            self.x_press = event.xdata
            self.y_press = event.ydata

    def pan_move(self, event):
        if event.inaxes == self.ax:
            xdata = event.xdata
            ydata = event.ydata
            cur_xlim = self.ax.get_xlim()
            cur_ylim = self.ax.get_ylim()
            dx = xdata - self.x_press
            dy = ydata - self.y_press
            new_xlim = [cur_xlim[0] - dx, cur_xlim[1] - dx]
            new_ylim = [cur_ylim[0] - dy, cur_ylim[1] - dy]

            # intercept new plot parameters that are out of bound
            new_xlim, new_ylim = check_limits(
                self.default_xlim, self.default_ylim, new_xlim, new_ylim
            )

            if cur_xlim != tuple(new_xlim) or cur_ylim != tuple(new_ylim):
                self.ax.set_xlim(new_xlim)
                self.ax.set_ylim(new_ylim)

                self.canvas.draw_idle()

    def update_annot(self, event, artist):
        self.ax.annot.xy = (event.xdata, event.ydata)
        text = f'Data #{artist.data_id}'
        self.ax.annot.set_text(text)
        self.ax.annot.set_visible(True)
        self.ax.draw_artist(self.ax.annot)

    def hover(self, event):
        vis = self.ax.annot.get_visible()
        if event.inaxes == self.ax:
            ind = 0
            cont = None
            while (
                ind in range(len(self.artists))
                and not cont
            ):
                artist = self.artists[ind]
                cont, _ = artist.contains(event)
                if cont and artist is not self.ax.last_artist:
                    if self.ax.last_artist is not None:
                        self.canvas.restore_region(self.canvas.bg_cache)
                        self.ax.last_artist.set_path_effects(
                            [PathEffects.Normal()]
                        )
                        self.ax.last_artist = None
                    artist.set_path_effects(
                        [PathEffects.withStroke(
                            linewidth=7, foreground="c", alpha=0.4
                        )]
                    )
                    self.ax.last_artist = artist
                    self.ax.draw_artist(self.ax.last_artist)
                    self.update_annot(event, self.ax.last_artist)
                ind += 1

            if vis and not cont and self.ax.last_artist:
                self.canvas.restore_region(self.canvas.bg_cache)
                self.ax.last_artist.set_path_effects([PathEffects.Normal()])
                self.ax.last_artist = None
                self.ax.annot.set_visible(False)
        elif vis:
            self.canvas.restore_region(self.canvas.bg_cache)
            self.ax.last_artist.set_path_effects([PathEffects.Normal()])
            self.ax.last_artist = None
            self.ax.annot.set_visible(False)
        self.canvas.update()
        self.canvas.flush_events()


if __name__ == '__main__':
    app = QApplication(sys.argv)
    test = Test()
    test.show()
    sys.exit(app.exec_())

No entiendo el problema. Como los artistas que están fuera de los ejes no se dibujan de todos modos, tampoco disminuirán la velocidad.
ImportanceOfBeingErnest

Entonces, ¿estás diciendo que ya hay una rutina que verifica cuáles de los artistas se pueden ver para que solo se dibujen los visibles? ¿Quizás esta rutina es lo que es computacionalmente muy costoso? Porque puede ver fácilmente una diferencia en el rendimiento si intenta lo siguiente, por ejemplo: con mi 1000 artista WME arriba, amplíe un solo artista y realice una panorámica. Notarás un retraso significativo. Ahora haga lo mismo pero marque solo 1 (o incluso 100) artista (s) y verá que casi no hay demora.
mapf

Bueno, la pregunta es, ¿eres capaz de escribir una rutina más eficiente? En un caso simple, tal vez. Para que pueda verificar qué artistas están dentro de los límites de la vista y establecer todos los demás invisibles. Si la verificación solo compara las coordenadas centrales de los puntos, eso es más rápido. Pero eso te haría perder el punto si solo su centro está afuera pero un poco menos de la mitad aún estaría dentro de la vista. Dicho esto, el principal problema aquí es que hay 1000 artistas en los ejes. Si, en cambio, usó solo uno plotcon todos los puntos, el problema no ocurriría.
ImportanceOfBeingErnest

Sí, absolutamente cierto. Es solo que mi premisa estaba equivocada. Pensé que la razón del mal desempeño era que todos los artistas se sienten atraídos independientemente de si pueden verse o no. Por lo tanto, pensé que una rutina inteligente que solo atrae a los artistas que se verán mejoraría el rendimiento, pero aparentemente esa rutina ya está en su lugar, así que supongo que no hay mucho que se pueda hacer aquí. Estoy bastante seguro de que no podré escribir una rutina más eficiente, al menos para un caso general.
mapf

Sin embargo, en mi caso, en realidad estoy tratando con colecciones de líneas (más una imagen en el fondo) y, como ya dijiste, incluso si solo fueran puntos como en mi MWE, simplemente verificar si las coordenadas están dentro de los ejes no es suficiente. Tal vez debería actualizar el MWE en consecuencia para hacerlo más claro.
mapf

Respuestas:


0

Puede encontrar qué artistas están en el área actual de los ejes si se enfoca en los datos que los artistas están trazando.

Por ejemplo, si coloca sus datos de puntos ( ay bmatrices) en una matriz numpy como esta:

self.points = np.random.randint(0, 100, (1000, 2))

puede obtener la lista de puntos dentro de los límites actuales xey:

xmin, xmax = self.ax.get_xlim()
ymin, ymax = self.ax.get_ylim()

p = self.points

indices_of_visible_points = (np.argwhere((p[:, 0] > xmin) & (p[:, 0] < xmax) & (p[:, 1] > ymin) &  (p[:, 1] < ymax))).flatten()

puede usar indices_of_visible_pointspara indexar su self.artistslista relacionada


¡Gracias por su respuesta! Desafortunadamente, esto solo funciona en caso de que los artistas sean puntos únicos. Ya no funciona si los artistas son líneas. Por ejemplo, imagina una línea definida por solo dos puntos donde los puntos se encuentran fuera de los límites de los ejes, sin embargo, la línea que conecta los puntos se cruza con el marco de los ejes. Tal vez debería editar el MWE en consecuencia para que sea más obvio.
mapf

Para mí, el enfoque es el mismo, centrarse en los datos . Si los artistas son líneas, también puede verificar la intersección con el rectángulo de vista. Si está trazando curvas, probablemente las muestree a intervalos fijos reduciéndolas a segmentos de línea. Por cierto, ¿puedes dar una muestra más realista de lo que estás tramando?
Guglie

Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.