Si está trabajando con grandes conjuntos de puntos, le aconsejo que use CKDtrees
:
import matplotlib.pyplot as plt
import numpy as np
import scipy.spatial
points = np.column_stack([np.random.rand(50), np.random.rand(50)])
fig, ax = plt.subplots()
coll = ax.scatter(points[:,0], points[:,1])
ckdtree = scipy.spatial.cKDTree(points)
Refactoré la kpie's
respuesta aquí un poco. Una vez ckdtree
creado, puede identificar los puntos más cercanos al instante y diversos tipos de información sobre ellos con un poco de esfuerzo:
def closest_point_distance(ckdtree, x, y):
#returns distance to closest point
return ckdtree.query([x, y])[0]
def closest_point_id(ckdtree, x, y):
#returns index of closest point
return ckdtree.query([x, y])[1]
def closest_point_coords(ckdtree, x, y):
# returns coordinates of closest point
return ckdtree.data[closest_point_id(ckdtree, x, y)]
# ckdtree.data is the same as points
Visualización interactiva de la posición del cursor.
Si desea que se muestren las coordenadas del punto más cercano en la barra de herramientas de navegación:
def val_shower(ckdtree):
#formatter of coordinates displayed on Navigation Bar
return lambda x, y: '[x = {}, y = {}]'.format(*closest_point_coords(ckdtree, x, y))
plt.gca().format_coord = val_shower(ckdtree)
plt.show()
Usando eventos.
Si desea otro tipo de interactividad, puede usar eventos:
def onclick(event):
if event.inaxes is not None:
print(closest_point_coords(ckdtree, event.xdata, event.ydata))
fig.canvas.mpl_connect('motion_notify_event', onclick)
plt.show()