Tenemos una discusión similar sobre tupla y estructura y escribo algunos puntos de referencia sencillos con la ayuda de uno de mis colegas para identificar las diferencias en términos de rendimiento entre tupla y estructura. Primero comenzamos con una estructura predeterminada y una tupla.
struct StructData {
int X;
int Y;
double Cost;
std::string Label;
bool operator==(const StructData &rhs) {
return std::tie(X,Y,Cost, Label) == std::tie(rhs.X, rhs.Y, rhs.Cost, rhs.Label);
}
bool operator<(const StructData &rhs) {
return X < rhs.X || (X == rhs.X && (Y < rhs.Y || (Y == rhs.Y && (Cost < rhs.Cost || (Cost == rhs.Cost && Label < rhs.Label)))));
}
};
using TupleData = std::tuple<int, int, double, std::string>;
Luego usamos Celero para comparar el desempeño de nuestra estructura y tupla simples. A continuación se muestra el código de referencia y los resultados de rendimiento recopilados con gcc-4.9.2 y clang-4.0.0:
std::vector<StructData> test_struct_data(const size_t N) {
std::vector<StructData> data(N);
std::transform(data.begin(), data.end(), data.begin(), [N](auto item) {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<> dis(0, N);
item.X = dis(gen);
item.Y = dis(gen);
item.Cost = item.X * item.Y;
item.Label = std::to_string(item.Cost);
return item;
});
return data;
}
std::vector<TupleData> test_tuple_data(const std::vector<StructData> &input) {
std::vector<TupleData> data(input.size());
std::transform(input.cbegin(), input.cend(), data.begin(),
[](auto item) { return std::tie(item.X, item.Y, item.Cost, item.Label); });
return data;
}
constexpr int NumberOfSamples = 10;
constexpr int NumberOfIterations = 5;
constexpr size_t N = 1000000;
auto const sdata = test_struct_data(N);
auto const tdata = test_tuple_data(sdata);
CELERO_MAIN
BASELINE(Sort, struct, NumberOfSamples, NumberOfIterations) {
std::vector<StructData> data(sdata.begin(), sdata.end());
std::sort(data.begin(), data.end());
}
BENCHMARK(Sort, tuple, NumberOfSamples, NumberOfIterations) {
std::vector<TupleData> data(tdata.begin(), tdata.end());
std::sort(data.begin(), data.end());
}
Resultados de rendimiento recopilados con clang-4.0.0
Celero
Timer resolution: 0.001000 us
-----------------------------------------------------------------------------------------------------------------------------------------------
Group | Experiment | Prob. Space | Samples | Iterations | Baseline | us/Iteration | Iterations/sec |
-----------------------------------------------------------------------------------------------------------------------------------------------
Sort | struct | Null | 10 | 5 | 1.00000 | 196663.40000 | 5.08 |
Sort | tuple | Null | 10 | 5 | 0.92471 | 181857.20000 | 5.50 |
Complete.
Y los resultados de rendimiento recopilados con gcc-4.9.2
Celero
Timer resolution: 0.001000 us
-----------------------------------------------------------------------------------------------------------------------------------------------
Group | Experiment | Prob. Space | Samples | Iterations | Baseline | us/Iteration | Iterations/sec |
-----------------------------------------------------------------------------------------------------------------------------------------------
Sort | struct | Null | 10 | 5 | 1.00000 | 219096.00000 | 4.56 |
Sort | tuple | Null | 10 | 5 | 0.91463 | 200391.80000 | 4.99 |
Complete.
De los resultados anteriores podemos ver claramente que
La tupla es más rápida que una estructura predeterminada
El producto binario por clang tiene un rendimiento superior al de gcc. clang-vs-gcc no es el propósito de esta discusión, así que no voy a profundizar en los detalles.
Todos sabemos que escribir un operador == o <o> para cada definición de estructura será una tarea dolorosa y con muchos errores. Reemplace nuestro comparador personalizado usando std :: tie y vuelva a ejecutar nuestro punto de referencia.
bool operator<(const StructData &rhs) {
return std::tie(X,Y,Cost, Label) < std::tie(rhs.X, rhs.Y, rhs.Cost, rhs.Label);
}
Celero
Timer resolution: 0.001000 us
-----------------------------------------------------------------------------------------------------------------------------------------------
Group | Experiment | Prob. Space | Samples | Iterations | Baseline | us/Iteration | Iterations/sec |
-----------------------------------------------------------------------------------------------------------------------------------------------
Sort | struct | Null | 10 | 5 | 1.00000 | 200508.20000 | 4.99 |
Sort | tuple | Null | 10 | 5 | 0.90033 | 180523.80000 | 5.54 |
Complete.
Ahora podemos ver que usar std :: tie hace que nuestro código sea más elegante y es más difícil cometer errores, sin embargo, perderemos aproximadamente un 1% de rendimiento. Me quedaré con la solución std :: tie por ahora, ya que también recibo una advertencia sobre la comparación de números de punto flotante con el comparador personalizado.
Hasta ahora no hemos tenido ninguna solución para hacer que nuestro código de estructura se ejecute más rápido. Echemos un vistazo a la función de intercambio y vuelva a escribirla para ver si podemos obtener algún rendimiento:
struct StructData {
int X;
int Y;
double Cost;
std::string Label;
bool operator==(const StructData &rhs) {
return std::tie(X,Y,Cost, Label) == std::tie(rhs.X, rhs.Y, rhs.Cost, rhs.Label);
}
void swap(StructData & other)
{
std::swap(X, other.X);
std::swap(Y, other.Y);
std::swap(Cost, other.Cost);
std::swap(Label, other.Label);
}
bool operator<(const StructData &rhs) {
return std::tie(X,Y,Cost, Label) < std::tie(rhs.X, rhs.Y, rhs.Cost, rhs.Label);
}
};
Resultados de rendimiento recopilados con clang-4.0.0
Celero
Timer resolution: 0.001000 us
-----------------------------------------------------------------------------------------------------------------------------------------------
Group | Experiment | Prob. Space | Samples | Iterations | Baseline | us/Iteration | Iterations/sec |
-----------------------------------------------------------------------------------------------------------------------------------------------
Sort | struct | Null | 10 | 5 | 1.00000 | 176308.80000 | 5.67 |
Sort | tuple | Null | 10 | 5 | 1.02699 | 181067.60000 | 5.52 |
Complete.
Y los resultados de rendimiento recopilados con gcc-4.9.2
Celero
Timer resolution: 0.001000 us
-----------------------------------------------------------------------------------------------------------------------------------------------
Group | Experiment | Prob. Space | Samples | Iterations | Baseline | us/Iteration | Iterations/sec |
-----------------------------------------------------------------------------------------------------------------------------------------------
Sort | struct | Null | 10 | 5 | 1.00000 | 198844.80000 | 5.03 |
Sort | tuple | Null | 10 | 5 | 1.00601 | 200039.80000 | 5.00 |
Complete.
Ahora nuestra estructura es ligeramente más rápida que la de una tupla ahora (alrededor del 3% con clang y menos del 1% con gcc), sin embargo, necesitamos escribir nuestra función de intercambio personalizada para todas nuestras estructuras.
tuple
implementación está definida, por lo tanto, depende de su implementación. Personalmente, no contaría con eso.