Me gustan algunas características de D, pero ¿estaría interesado si vienen con una penalización de tiempo de ejecución?
Para comparar, implementé un programa simple que computa productos escalares de muchos vectores cortos tanto en C ++ como en D. El resultado es sorprendente:
- D: 18.9 s [ver abajo para el tiempo de ejecución final]
- C ++: 3.8 s
¿C ++ es realmente casi cinco veces más rápido o cometí un error en el programa D?
Compilé C ++ con g ++ -O3 (gcc-snapshot 2011-02-19) y D con dmd -O (dmd 2.052) en un escritorio Linux reciente moderado. Los resultados son reproducibles en varias ejecuciones y las desviaciones estándar son insignificantes.
Aquí el programa C ++:
#include <iostream>
#include <random>
#include <chrono>
#include <string>
#include <vector>
#include <array>
typedef std::chrono::duration<long, std::ratio<1, 1000>> millisecs;
template <typename _T>
long time_since(std::chrono::time_point<_T>& time) {
long tm = std::chrono::duration_cast<millisecs>( std::chrono::system_clock::now() - time).count();
time = std::chrono::system_clock::now();
return tm;
}
const long N = 20000;
const int size = 10;
typedef int value_type;
typedef long long result_type;
typedef std::vector<value_type> vector_t;
typedef typename vector_t::size_type size_type;
inline value_type scalar_product(const vector_t& x, const vector_t& y) {
value_type res = 0;
size_type siz = x.size();
for (size_type i = 0; i < siz; ++i)
res += x[i] * y[i];
return res;
}
int main() {
auto tm_before = std::chrono::system_clock::now();
// 1. allocate and fill randomly many short vectors
vector_t* xs = new vector_t [N];
for (int i = 0; i < N; ++i) {
xs[i] = vector_t(size);
}
std::cerr << "allocation: " << time_since(tm_before) << " ms" << std::endl;
std::mt19937 rnd_engine;
std::uniform_int_distribution<value_type> runif_gen(-1000, 1000);
for (int i = 0; i < N; ++i)
for (int j = 0; j < size; ++j)
xs[i][j] = runif_gen(rnd_engine);
std::cerr << "random generation: " << time_since(tm_before) << " ms" << std::endl;
// 2. compute all pairwise scalar products:
time_since(tm_before);
result_type avg = 0;
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
avg += scalar_product(xs[i], xs[j]);
avg = avg / N*N;
auto time = time_since(tm_before);
std::cout << "result: " << avg << std::endl;
std::cout << "time: " << time << " ms" << std::endl;
}
Y aquí la versión D:
import std.stdio;
import std.datetime;
import std.random;
const long N = 20000;
const int size = 10;
alias int value_type;
alias long result_type;
alias value_type[] vector_t;
alias uint size_type;
value_type scalar_product(const ref vector_t x, const ref vector_t y) {
value_type res = 0;
size_type siz = x.length;
for (size_type i = 0; i < siz; ++i)
res += x[i] * y[i];
return res;
}
int main() {
auto tm_before = Clock.currTime();
// 1. allocate and fill randomly many short vectors
vector_t[] xs;
xs.length = N;
for (int i = 0; i < N; ++i) {
xs[i].length = size;
}
writefln("allocation: %i ", (Clock.currTime() - tm_before));
tm_before = Clock.currTime();
for (int i = 0; i < N; ++i)
for (int j = 0; j < size; ++j)
xs[i][j] = uniform(-1000, 1000);
writefln("random: %i ", (Clock.currTime() - tm_before));
tm_before = Clock.currTime();
// 2. compute all pairwise scalar products:
result_type avg = cast(result_type) 0;
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
avg += scalar_product(xs[i], xs[j]);
avg = avg / N*N;
writefln("result: %d", avg);
auto time = Clock.currTime() - tm_before;
writefln("scalar products: %i ", time);
return 0;
}
avg = avg / N*N
(orden de operaciones).