Tarea : Imprima números del 1 al 1000 sin usar ningún bucle o declaraciones condicionales. No solo escriba la declaración printf()
o cout
1000 veces.
¿Cómo harías eso usando C o C ++?
:?
no es una declaración condicional (es una expresión) ...
Tarea : Imprima números del 1 al 1000 sin usar ningún bucle o declaraciones condicionales. No solo escriba la declaración printf()
o cout
1000 veces.
¿Cómo harías eso usando C o C ++?
:?
no es una declaración condicional (es una expresión) ...
Respuestas:
Tiempo de compilación recursividad! :PAGS
#include <iostream>
template<int N>
struct NumberGeneration{
static void out(std::ostream& os)
{
NumberGeneration<N-1>::out(os);
os << N << std::endl;
}
};
template<>
struct NumberGeneration<1>{
static void out(std::ostream& os)
{
os << 1 << std::endl;
}
};
int main(){
NumberGeneration<1000>::out(std::cout);
}
'\n'
menos que realmente quiera enjuagar, use a ++i
menos que realmente necesite el valor anterior i
, pase por const
referencia a menos que tenga una buena razón para no ... Cuando los desarrolladores dejan de pensar en estos (o nunca comienzan), tarde o temprano se encontrarán con un problema donde esto importa, solo que ni siquiera sabían que hay puntos en los que podría importar.
Este realmente se compila en un ensamblaje que no tiene condicionales:
#include <stdio.h>
#include <stdlib.h>
void main(int j) {
printf("%d\n", j);
(&main + (&exit - &main)*(j/1000))(j+1);
}
Esta versión de lo anterior en el estándar C, ya que no depende de la aritmética en los punteros de función:
#include <stdio.h>
#include <stdlib.h>
void f(int j)
{
static void (*const ft[2])(int) = { f, exit };
printf("%d\n", j);
ft[j/1000](j + 1);
}
int main(int argc, char *argv[])
{
f(1);
}
j
es inicialmente 1
porque en realidad argc
es así, 1
si el programa se llama sin argumentos. Entonces, j/1000
es 0
hasta que se j
convierte 1000
, después de lo cual es 1
. (exit - main)
es, por supuesto, la diferencia entre las direcciones de exit()
y main()
. Eso significa que (main + (exit - main)*(j/1000))
es main()
hasta que se j
convierte 1000
, después de lo cual se convierte exit()
. El resultado final es que main()
se llama cuando se inicia el programa, luego se llama recursivamente 999 veces mientras se incrementa j
, luego se llama exit()
. Whew :)
#include <stdio.h>
int i = 0;
p() { printf("%d\n", ++i); }
a() { p();p();p();p();p(); }
b() { a();a();a();a();a(); }
c() { b();b();b();b();b(); }
main() { c();c();c();c();c();c();c();c(); return 0; }
Me sorprende que nadie haya publicado esto, pensé que era la forma más obvia. 1000 = 5*5*5*8.
Parece que no necesita usar bucles
printf("1 10 11 100 101 110 111 1000\n");
copy
es hacer trampa
printf
tiene un bucle: p
copy
es hacer trampa"
Aquí hay tres soluciones que sé. Sin embargo, el segundo podría ser discutido.
// compile time recursion
template<int N> void f1()
{
f1<N-1>();
cout << N << '\n';
}
template<> void f1<1>()
{
cout << 1 << '\n';
}
// short circuiting (not a conditional statement)
void f2(int N)
{
N && (f2(N-1), cout << N << '\n');
}
// constructors!
struct A {
A() {
static int N = 1;
cout << N++ << '\n';
}
};
int main()
{
f1<1000>();
f2(1000);
delete[] new A[1000]; // (3)
A data[1000]; // (4) added by Martin York
}
[ Editar: (1) y (4) se pueden usar solo para compilar constantes de tiempo, (2) y (3) también se pueden usar para expresiones de tiempo de ejecución - finalice la edición. ]
¡No estoy escribiendo la declaración printf 1000 veces!
printf("1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n11\n12\n13\n14\n15\n16\n17\n18\n19\n20\n21\n22\n23\n24\n25\n26\n27\n28\n29\n30\n31\n32\n33\n34\n35\n36\n37\n38\n39\n40\n41\n42\n43\n44\n45\n46\n47\n48\n49\n50\n51\n52\n53\n54\n55\n56\n57\n58\n59\n60\n61\n62\n63\n64\n65\n66\n67\n68\n69\n70\n71\n72\n73\n74\n75\n76\n77\n78\n79\n80\n81\n82\n83\n84\n85\n86\n87\n88\n89\n90\n91\n92\n93\n94\n95\n96\n97\n98\n99\n100\n101\n102\n103\n104\n105\n106\n107\n108\n109\n110\n111\n112\n113\n114\n115\n116\n117\n118\n119\n120\n121\n122\n123\n124\n125\n126\n127\n128\n129\n130\n131\n132\n133\n134\n135\n136\n137\n138\n139\n140\n141\n142\n143\n144\n145\n146\n147\n148\n149\n150\n151\n152\n153\n154\n155\n156\n157\n158\n159\n160\n161\n162\n163\n164\n165\n166\n167\n168\n169\n170\n171\n172\n173\n174\n175\n176\n177\n178\n179\n180\n181\n182\n183\n184\n185\n186\n187\n188\n189\n190\n191\n192\n193\n194\n195\n196\n197\n198\n199\n200\n201\n202\n203\n204\n205\n206\n207\n208\n209\n210\n211\n212\n213\n214\n215\n216\n217\n218\n219\n220\n221\n222\n223\n224\n225\n226\n227\n228\n229\n230\n231\n232\n233\n234\n235\n236\n237\n238\n239\n240\n241\n242\n243\n244\n245\n246\n247\n248\n249\n250\n251\n252\n253\n254\n255\n256\n257\n258\n259\n260\n261\n262\n263\n264\n265\n266\n267\n268\n269\n270\n271\n272\n273\n274\n275\n276\n277\n278\n279\n280\n281\n282\n283\n284\n285\n286\n287\n288\n289\n290\n291\n292\n293\n294\n295\n296\n297\n298\n299\n300\n301\n302\n303\n304\n305\n306\n307\n308\n309\n310\n311\n312\n313\n314\n315\n316\n317\n318\n319\n320\n321\n322\n323\n324\n325\n326\n327\n328\n329\n330\n331\n332\n333\n334\n335\n336\n337\n338\n339\n340\n341\n342\n343\n344\n345\n346\n347\n348\n349\n350\n351\n352\n353\n354\n355\n356\n357\n358\n359\n360\n361\n362\n363\n364\n365\n366\n367\n368\n369\n370\n371\n372\n373\n374\n375\n376\n377\n378\n379\n380\n381\n382\n383\n384\n385\n386\n387\n388\n389\n390\n391\n392\n393\n394\n395\n396\n397\n398\n399\n400\n401\n402\n403\n404\n405\n406\n407\n408\n409\n410\n411\n412\n413\n414\n415\n416\n417\n418\n419\n420\n421\n422\n423\n424\n425\n426\n427\n428\n429\n430\n431\n432\n433\n434\n435\n436\n437\n438\n439\n440\n441\n442\n443\n444\n445\n446\n447\n448\n449\n450\n451\n452\n453\n454\n455\n456\n457\n458\n459\n460\n461\n462\n463\n464\n465\n466\n467\n468\n469\n470\n471\n472\n473\n474\n475\n476\n477\n478\n479\n480\n481\n482\n483\n484\n485\n486\n487\n488\n489\n490\n491\n492\n493\n494\n495\n496\n497\n498\n499\n500\n501\n502\n503\n504\n505\n506\n507\n508\n509\n510\n511\n512\n513\n514\n515\n516\n517\n518\n519\n520\n521\n522\n523\n524\n525\n526\n527\n528\n529\n530\n531\n532\n533\n534\n535\n536\n537\n538\n539\n540\n541\n542\n543\n544\n545\n546\n547\n548\n549\n550\n551\n552\n553\n554\n555\n556\n557\n558\n559\n560\n561\n562\n563\n564\n565\n566\n567\n568\n569\n570\n571\n572\n573\n574\n575\n576\n577\n578\n579\n580\n581\n582\n583\n584\n585\n586\n587\n588\n589\n590\n591\n592\n593\n594\n595\n596\n597\n598\n599\n600\n601\n602\n603\n604\n605\n606\n607\n608\n609\n610\n611\n612\n613\n614\n615\n616\n617\n618\n619\n620\n621\n622\n623\n624\n625\n626\n627\n628\n629\n630\n631\n632\n633\n634\n635\n636\n637\n638\n639\n640\n641\n642\n643\n644\n645\n646\n647\n648\n649\n650\n651\n652\n653\n654\n655\n656\n657\n658\n659\n660\n661\n662\n663\n664\n665\n666\n667\n668\n669\n670\n671\n672\n673\n674\n675\n676\n677\n678\n679\n680\n681\n682\n683\n684\n685\n686\n687\n688\n689\n690\n691\n692\n693\n694\n695\n696\n697\n698\n699\n700\n701\n702\n703\n704\n705\n706\n707\n708\n709\n710\n711\n712\n713\n714\n715\n716\n717\n718\n719\n720\n721\n722\n723\n724\n725\n726\n727\n728\n729\n730\n731\n732\n733\n734\n735\n736\n737\n738\n739\n740\n741\n742\n743\n744\n745\n746\n747\n748\n749\n750\n751\n752\n753\n754\n755\n756\n757\n758\n759\n760\n761\n762\n763\n764\n765\n766\n767\n768\n769\n770\n771\n772\n773\n774\n775\n776\n777\n778\n779\n780\n781\n782\n783\n784\n785\n786\n787\n788\n789\n790\n791\n792\n793\n794\n795\n796\n797\n798\n799\n800\n801\n802\n803\n804\n805\n806\n807\n808\n809\n810\n811\n812\n813\n814\n815\n816\n817\n818\n819\n820\n821\n822\n823\n824\n825\n826\n827\n828\n829\n830\n831\n832\n833\n834\n835\n836\n837\n838\n839\n840\n841\n842\n843\n844\n845\n846\n847\n848\n849\n850\n851\n852\n853\n854\n855\n856\n857\n858\n859\n860\n861\n862\n863\n864\n865\n866\n867\n868\n869\n870\n871\n872\n873\n874\n875\n876\n877\n878\n879\n880\n881\n882\n883\n884\n885\n886\n887\n888\n889\n890\n891\n892\n893\n894\n895\n896\n897\n898\n899\n900\n901\n902\n903\n904\n905\n906\n907\n908\n909\n910\n911\n912\n913\n914\n915\n916\n917\n918\n919\n920\n921\n922\n923\n924\n925\n926\n927\n928\n929\n930\n931\n932\n933\n934\n935\n936\n937\n938\n939\n940\n941\n942\n943\n944\n945\n946\n947\n948\n949\n950\n951\n952\n953\n954\n955\n956\n957\n958\n959\n960\n961\n962\n963\n964\n965\n966\n967\n968\n969\n970\n971\n972\n973\n974\n975\n976\n977\n978\n979\n980\n981\n982\n983\n984\n985\n986\n987\n988\n989\n990\n991\n992\n993\n994\n995\n996\n997\n998\n999\n1000\n");
De nada ;)
$r='printf("'; for (1..1000) { $r.="$_\\n" } $r.='");'; print $r;
printf("%d\n", 2);
printf("%d\n", 3);
No imprime todos los números, pero sí "Imprime números del 1 al 1000". ¡Pregunta ambigua para la victoria! :)
print "Print numbers from 1 to 1000."
- pregunta ambigua para la victoria, descripciones inexactas apestan :)
¡Activa un error fatal! Aquí está el archivo, countup.c:
#include <stdio.h>
#define MAX 1000
int boom;
int foo(n) {
boom = 1 / (MAX-n+1);
printf("%d\n", n);
foo(n+1);
}
int main() {
foo(1);
}
Compile, luego ejecute en un indicador de shell:
$ ./countup
1
2
3
...
996
997
998
999
1000
Floating point exception
$
¡De hecho, esto imprime los números del 1 al 1000, sin ningún bucle o condicionales!
\n
que será suficiente para vaciar la salida.
Usando comandos del sistema:
system("/usr/bin/seq 1000");
seq
utilidad (en la configuración predeterminada)? <sonrisa />
system("/bin/echo {1..1000}");
Si solo hubieras escrito la prueba de la unidad primero ...
No probado, pero debe ser estándar C de vainilla:
void yesprint(int i);
void noprint(int i);
typedef void(*fnPtr)(int);
fnPtr dispatch[] = { noprint, yesprint };
void yesprint(int i) {
printf("%d\n", i);
dispatch[i < 1000](i + 1);
}
void noprint(int i) { /* do nothing. */ }
int main() {
yesprint(1);
}
<
No es una condición. Es un operador relacional. if
/ else
es una declaración condicional. ?:
Es un operador condicional. <
es solo un operador que devuelve un valor booleano. Probablemente sea una sola instrucción de máquina sin saltos ni nada.
cmpl
, setle
y movzbl
. x86-64 es eso más a cltq
. PowerPC es 2 instrucciones: cmpwi
y crnot
.
1 - i / 1000
. No hay comparaciones!
Un poco aburrido en comparación con otros aquí, pero probablemente lo que están buscando.
#include <stdio.h>
int f(int val) {
--val && f(val);
return printf( "%d\n", val+1);
}
void main(void) {
f(1000);
}
&&
evaluación perezosa en la primera línea de f()
.
La tarea nunca especificó que el programa debe terminar después de 1000.
void f(int n){
printf("%d\n",n);
f(n+1);
}
int main(){
f(1);
}
( Se puede acortar a esto si ejecuta ./a.out sin parámetros adicionales )
void main(int n) {
printf("%d\n", n);
main(n+1);
}
rand()
, imprimiremos todos los números del 1 al 1000. Eventualmente =: P
¡Muy fácil! :PAGS
#include <iostream>
static int current = 1;
struct print
{
print() { std::cout << current++ << std::endl; }
};
int main()
{
print numbers [1000];
}
Podemos lanzar 1000 hilos, cada uno imprimiendo uno de los números. Instale OpenMPI , compile usando mpicxx -o 1000 1000.cpp
y ejecute usando mpirun -np 1000 ./1000
. Probablemente necesitará aumentar su límite de descriptor usando limit
o ulimit
. Tenga en cuenta que esto será bastante lento, ¡a menos que tenga muchos núcleos!
#include <cstdio>
#include <mpi.h>
using namespace std;
int main(int argc, char **argv) {
MPI::Init(argc, argv);
cout << MPI::COMM_WORLD.Get_rank() + 1 << endl;
MPI::Finalize();
}
Por supuesto, los números no se imprimirán necesariamente en orden, pero la pregunta no requiere que se ordenen.
MPI::Init()
) no puedo imaginar ningún bucle en el binario real de su programa 1000.cpp, le di un +1, aunque ciertamente hay bucles en ejecución cuando lo ejecuta.
Con llanura C:
#include<stdio.h>
/* prints number i */
void print1(int i) {
printf("%d\n",i);
}
/* prints 10 numbers starting from i */
void print10(int i) {
print1(i);
print1(i+1);
print1(i+2);
print1(i+3);
print1(i+4);
print1(i+5);
print1(i+6);
print1(i+7);
print1(i+8);
print1(i+9);
}
/* prints 100 numbers starting from i */
void print100(int i) {
print10(i);
print10(i+10);
print10(i+20);
print10(i+30);
print10(i+40);
print10(i+50);
print10(i+60);
print10(i+70);
print10(i+80);
print10(i+90);
}
/* prints 1000 numbers starting from i */
void print1000(int i) {
print100(i);
print100(i+100);
print100(i+200);
print100(i+300);
print100(i+400);
print100(i+500);
print100(i+600);
print100(i+700);
print100(i+800);
print100(i+900);
}
int main() {
print1000(1);
return 0;
}
Por supuesto, puede implementar la misma idea para otras bases (2: print2 print4 print8 ...) pero el número 1000 aquí sugiere la base 10. También puede reducir un poco el número de líneas que agregan funciones intermedias: print2() print10() print20() print100() print200() print1000()
y otras alternativas equivalentes.
B
, 1000 es un número perfectamente válido y siempre es igual B^3
.
Simplemente use std :: copy () con un iterador especial.
#include <algorithm>
#include <iostream>
#include <iterator>
struct number_iterator
{
typedef std::input_iterator_tag iterator_category;
typedef int value_type;
typedef std::size_t difference_type;
typedef int* pointer;
typedef int& reference;
number_iterator(int v): value(v) {}
bool operator != (number_iterator const& rhs) { return value != rhs.value;}
number_iterator operator++() { ++value; return *this;}
int operator*() { return value; }
int value;
};
int main()
{
std::copy(number_iterator(1),
number_iterator(1001),
std::ostream_iterator<int>(std::cout, " "));
}
std::copy
tanto como el condicional implícito en el operator !=()
. De todos modos, es una forma inteligente de procesar un rango, y los enfoques inteligentes es lo que busco en respuesta a preguntas como esta.
Uso del puntero de función (ab). Sin magia de preprocesador para aumentar la producción. ANSI C.
#include <stdio.h>
int i=1;
void x10( void (*f)() ){
f(); f(); f(); f(); f();
f(); f(); f(); f(); f();
}
void I(){printf("%i ", i++);}
void D(){ x10( I ); }
void C(){ x10( D ); }
void M(){ x10( C ); }
int main(){
M();
}
Respuesta fea de C (desenrollada para un solo cuadro de pila por potencia de 10):
#define f5(i) f(i);f(i+j);f(i+j*2);f(i+j*3);f(i+j*4)
void f10(void(*f)(int), int i, int j){f5(i);f5(i+j*5);}
void p1(int i){printf("%d,",i);}
#define px(x) void p##x##0(int i){f10(p##x, i, x);}
px(1); px(10); px(100);
void main()
{
p1000(1);
}
Desbordamiento de pila:
#include <stdio.h>
static void print_line(int i)
{
printf("%d\n", i);
print_line(i+1);
}
int main(int argc, char* argv[])
{
//get up near the stack limit
char tmp[ 8388608 - 32 * 1000 - 196 * 32 ];
print_line(1);
}
Esto es para una pila de 8 MB. Cada invocación de función parece tomar aproximadamente 32 bytes (de ahí el 32 * 1000). Pero luego, cuando lo ejecuté, solo llegué a 804 (de ahí el 196 * 32; quizás el tiempo de ejecución C tiene otras partes en la pila que también debes deducir).
Diversión con punteros de función (no se necesita nada de ese TMP novedoso):
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#define MSB(typ) ((sizeof(typ) * CHAR_BIT) - 1)
void done(int x, int y);
void display(int x, int y);
void (*funcs[])(int,int) = {
done,
display
};
void done(int x, int y)
{
exit(0);
}
void display(int x, int limit)
{
printf( "%d\n", x);
funcs[(((unsigned int)(x-limit)) >> MSB(int)) & 1](x+1, limit);
}
int main()
{
display(1, 1000);
return 0;
}
Como nota al margen: tomé la prohibición de los condicionales para extenderla también a operadores lógicos y relacionales. Si permite la negación lógica, la llamada recursiva se puede simplificar para:
funcs[!!(limit-1)](x+1, limit-1);
funcs[!!(limit-1)](x+1, limit-1);
!
y cambiar los elementos de la matriz de puntero de función, pero no sé si eso funcionará bien con su otra locura.
Siento que esta respuesta será muy simple y fácil de entender.
int print1000(int num=1)
{
printf("%d\n", num);
// it will check first the num is less than 1000.
// If yes then call recursive function to print
return num<1000 && print1000(++num);
}
int main()
{
print1000();
return 0;
}
¡Extrañé toda la diversión, todas las buenas respuestas de C ++ ya se han publicado!
Esto es lo más extraño que se me ocurre, aunque no apostaría que es legal C99: p
#include <stdio.h>
int i = 1;
int main(int argc, char *argv[printf("%d\n", i++)])
{
return (i <= 1000) && main(argc, argv);
}
Otro, con un poco de trampa:
#include <stdio.h>
#include <boost/preprocessor.hpp>
#define ECHO_COUNT(z, n, unused) n+1
#define FORMAT_STRING(z, n, unused) "%d\n"
int main()
{
printf(BOOST_PP_REPEAT(1000, FORMAT_STRING, ~), BOOST_PP_ENUM(LOOP_CNT, ECHO_COUNT, ~));
}
Última idea, mismo truco:
#include <boost/preprocessor.hpp>
#include <iostream>
int main()
{
#define ECHO_COUNT(z, n, unused) BOOST_PP_STRINGIZE(BOOST_PP_INC(n))"\n"
std::cout << BOOST_PP_REPEAT(1000, ECHO_COUNT, ~) << std::endl;
}
main
resulta en un comportamiento indefinido como recuerdo.
&&
y ||
probablemente caerían en "condicionales" ya que se cortocircuitan (como lo haría ?:
).
Muy fácil:
int main(int argc, char* argv[])
{
printf(argv[0]);
}
método de ejecución:
printer.exe "1;2;3;4;5;6;7;8;9;10;11;12;13;14;15;16;17;18;19;20;21;22;23;24;25;26;27;28;29;30;31;32;33;34;35;36;37;38;39;40;41;42;43;44;45;46;47;48;49;50;51;52;53;54;55;56;57;58;59;60;61;62;63;64;65;66;67;68;69;70;71;72;73;74;75;76;77;78;79;80;81;82;83;84;85;86;87;88;89;90;91;92;93;94;95;96;97;98;99;100;101;102;103;104;105;106;107;108;109;110;111;112;113;114;115;116;117;118;119;120;121;122;123;124;125;126;127;128;129;130;131;132;133;134;135;136;137;138;139;140;141;142;143;144;145;146;147;148;149;150;151;152;153;154;155;156;157;158;159;160;161;162;163;164;165;166;167;168;169;170;171;172;173;174;175;176;177;178;179;180;181;182;183;184;185;186;187;188;189;190;191;192;193;194;195;196;197;198;199;200;201;202;203;204;205;206;207;208;209;210;211;212;213;214;215;216;217;218;219;220;221;222;223;224;225;226;227;228;229;230;231;232;233;234;235;236;237;238;239;240;241;242;243;244;245;246;247;248;249;250;251;252;253;254;255;256;257;258;259;260;261;262;263;264;265;266;267;268;269;270;271;272;273;274;275;276;277;278;279;280;281;282;283;284;285;286;287;288;289;290;291;292;293;294;295;296;297;298;299;300;301;302;303;304;305;306;307;308;309;310;311;312;313;314;315;316;317;318;319;320;321;322;323;324;325;326;327;328;329;330;331;332;333;334;335;336;337;338;339;340;341;342;343;344;345;346;347;348;349;350;351;352;353;354;355;356;357;358;359;360;361;362;363;364;365;366;367;368;369;370;371;372;373;374;375;376;377;378;379;380;381;382;383;384;385;386;387;388;389;390;391;392;393;394;395;396;397;398;399;400;401;402;403;404;405;406;407;408;409;410;411;412;413;414;415;416;417;418;419;420;421;422;423;424;425;426;427;428;429;430;431;432;433;434;435;436;437;438;439;440;441;442;443;444;445;446;447;448;449;450;451;452;453;454;455;456;457;458;459;460;461;462;463;464;465;466;467;468;469;470;471;472;473;474;475;476;477;478;479;480;481;482;483;484;485;486;487;488;489;490;491;492;493;494;495;496;497;498;499;500;501;502;503;504;505;506;507;508;509;510;511;512;513;514;515;516;517;518;519;520;521;522;523;524;525;526;527;528;529;530;531;532;533;534;535;536;537;538;539;540;541;542;543;544;545;546;547;548;549;550;551;552;553;554;555;556;557;558;559;560;561;562;563;564;565;566;567;568;569;570;571;572;573;574;575;576;577;578;579;580;581;582;583;584;585;586;587;588;589;590;591;592;593;594;595;596;597;598;599;600;601;602;603;604;605;606;607;608;609;610;611;612;613;614;615;616;617;618;619;620;621;622;623;624;625;626;627;628;629;630;631;632;633;634;635;636;637;638;639;640;641;642;643;644;645;646;647;648;649;650;651;652;653;654;655;656;657;658;659;660;661;662;663;664;665;666;667;668;669;670;671;672;673;674;675;676;677;678;679;680;681;682;683;684;685;686;687;688;689;690;691;692;693;694;695;696;697;698;699;700;701;702;703;704;705;706;707;708;709;710;711;712;713;714;715;716;717;718;719;720;721;722;723;724;725;726;727;728;729;730;731;732;733;734;735;736;737;738;739;740;741;742;743;744;745;746;747;748;749;750;751;752;753;754;755;756;757;758;759;760;761;762;763;764;765;766;767;768;769;770;771;772;773;774;775;776;777;778;779;780;781;782;783;784;785;786;787;788;789;790;791;792;793;794;795;796;797;798;799;800;801;802;803;804;805;806;807;808;809;810;811;812;813;814;815;816;817;818;819;820;821;822;823;824;825;826;827;828;829;830;831;832;833;834;835;836;837;838;839;840;841;842;843;844;845;846;847;848;849;850;851;852;853;854;855;856;857;858;859;860;861;862;863;864;865;866;867;868;869;870;871;872;873;874;875;876;877;878;879;880;881;882;883;884;885;886;887;888;889;890;891;892;893;894;895;896;897;898;899;900;901;902;903;904;905;906;907;908;909;910;911;912;913;914;915;916;917;918;919;920;921;922;923;924;925;926;927;928;929;930;931;932;933;934;935;936;937;938;939;940;941;942;943;944;945;946;947;948;949;950;951;952;953;954;955;956;957;958;959;960;961;962;963;964;965;966;967;968;969;970;971;972;973;974;975;976;977;978;979;980;981;982;983;984;985;986;987;988;989;990;991;992;993;994;995;996;997;998;999;1000"
La especificación no dice que la secuencia debe generarse dentro del código :)
#include <cstdlib>
#include <iostream>
#include <string>
using namespace std;
class Printer
{
public:
Printer() { cout << ++i_ << "\n"; }
private:
static unsigned i_;
};
unsigned Printer::i_ = 0;
int main()
{
Printer p[1000];
}
Más abuso del preprocesador:
#include <stdio.h>
#define A1(x,y) #x #y "0\n" #x #y "1\n" #x #y "2\n" #x #y "3\n" #x #y "4\n" #x #y "5\n" #x #y "6\n" #x #y "7\n" #x #y "8\n" #x #y "9\n"
#define A2(x) A1(x,1) A1(x,2) A1(x,3) A1(x,4) A1(x,5) A1(x,6) A1(x,7) A1(x,8) A1(x,9)
#define A3(x) A1(x,0) A2(x)
#define A4 A3(1) A3(2) A3(3) A3(4) A3(5) A3(6) A3(7) A3(8) A3(9)
#define A5 "1\n2\n3\n4\n5\n6\n7\n8\n9\n" A2() A4 "1000\n"
int main(int argc, char *argv[]) {
printf(A5);
return 0;
}
Me siento tan sucia; Creo que iré a ducharme ahora.
A2()
sin una discusión como esa?
Si se aceptan soluciones POSIX:
#include <stdio.h>
#include <signal.h>
#include <stdlib.h>
#include <sys/time.h>
#include <pthread.h>
static void die(int sig) {
exit(0);
}
static void wakeup(int sig) {
static int counter = 1;
struct itimerval timer;
float i = 1000 / (1000 - counter);
printf("%d\n", counter++);
timer.it_interval.tv_sec = 0;
timer.it_interval.tv_usec = 0;
timer.it_value.tv_sec = 0;
timer.it_value.tv_usec = i; /* Avoid code elimination */
setitimer(ITIMER_REAL, &timer, 0);
}
int main() {
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
signal(SIGFPE, die);
signal(SIGALRM, wakeup);
wakeup(0);
pthread_mutex_lock(&mutex);
pthread_mutex_lock(&mutex); /* Deadlock, YAY! */
return 0;
}
Dado que no hay restricción en los errores ..
int i=1; int main() { int j=i/(i-1001); printf("%d\n", i++); main(); }
O mejor(?),
#include <stdlib.h>
#include <signal.h>
int i=1;
int foo() { int j=i/(i-1001); printf("%d\n", i++); foo(); }
int main()
{
signal(SIGFPE, exit);
foo();
}
volatile
a la declaración dej
printf
e imprimir dos números cada vez, ¿no?