Si está utilizando Java 1.5 o posterior, este es un algoritmo GCD binario iterativo que se utiliza Integer.numberOfTrailingZeros()
para reducir el número de comprobaciones e iteraciones necesarias.
public class Utils {
public static final int gcd( int a, int b ){
// Deal with the degenerate case where values are Integer.MIN_VALUE
// since -Integer.MIN_VALUE = Integer.MAX_VALUE+1
if ( a == Integer.MIN_VALUE )
{
if ( b == Integer.MIN_VALUE )
throw new IllegalArgumentException( "gcd() is greater than Integer.MAX_VALUE" );
return 1 << Integer.numberOfTrailingZeros( Math.abs(b) );
}
if ( b == Integer.MIN_VALUE )
return 1 << Integer.numberOfTrailingZeros( Math.abs(a) );
a = Math.abs(a);
b = Math.abs(b);
if ( a == 0 ) return b;
if ( b == 0 ) return a;
int factorsOfTwoInA = Integer.numberOfTrailingZeros(a),
factorsOfTwoInB = Integer.numberOfTrailingZeros(b),
commonFactorsOfTwo = Math.min(factorsOfTwoInA,factorsOfTwoInB);
a >>= factorsOfTwoInA;
b >>= factorsOfTwoInB;
while(a != b){
if ( a > b ) {
a = (a - b);
a >>= Integer.numberOfTrailingZeros( a );
} else {
b = (b - a);
b >>= Integer.numberOfTrailingZeros( b );
}
}
return a << commonFactorsOfTwo;
}
}
Prueba de unidad:
import java.math.BigInteger;
import org.junit.Test;
import static org.junit.Assert.*;
public class UtilsTest {
@Test
public void gcdUpToOneThousand(){
for ( int x = -1000; x <= 1000; ++x )
for ( int y = -1000; y <= 1000; ++y )
{
int gcd = Utils.gcd(x, y);
int expected = BigInteger.valueOf(x).gcd(BigInteger.valueOf(y)).intValue();
assertEquals( expected, gcd );
}
}
@Test
public void gcdMinValue(){
for ( int x = 0; x < Integer.SIZE-1; x++ ){
int gcd = Utils.gcd(Integer.MIN_VALUE,1<<x);
int expected = BigInteger.valueOf(Integer.MIN_VALUE).gcd(BigInteger.valueOf(1<<x)).intValue();
assertEquals( expected, gcd );
}
}
}