Respuestas:
Si el orden no es importante y no necesita preocuparse por los duplicados, puede usar la intersección establecida:
>>> a = [1,2,3,4,5]
>>> b = [1,3,5,6]
>>> list(set(a) & set(b))
[1, 3, 5]
a = [1,1,2,3,4,5]
y b = [1,1,3,5,6]
luego la intersección es [1,1,3,5]
pero por el método anterior dará como resultado una sola, 1
es decir, [1, 3, 5]
cuál será la forma de escribir para hacerlo entonces?
intersection
se entiende comúnmente como basado en conjunto . Está buscando un animal ligeramente diferente, y es posible que deba hacerlo manualmente clasificando cada lista y fusionando los resultados, y manteniendo duplicados en la fusión.
Usar las comprensiones de listas es bastante obvio para mí. No estoy seguro sobre el rendimiento, pero al menos las cosas permanecen en las listas.
[x for x in a if x in b]
O "todos los valores de x que están en A, si el valor de X está en B".
b
un set y tendrás O (n)
Si convierte la mayor de las dos listas en un conjunto, puede obtener la intersección de ese conjunto con cualquier iterable usando intersection()
:
a = [1,2,3,4,5]
b = [1,3,5,6]
set(a).intersection(b)
list(set(a) & set(b))
Haz un set con el más grande:
_auxset = set(a)
Luego,
c = [x for x in b if x in _auxset]
hará lo que quiera (preservar b
los pedidos, no a
los que no necesariamente pueden preservar ambos ) y lo hará rápidamente . (El uso if x in a
como la condición en la comprensión de la lista también funcionaría y evitaría la necesidad de construir _auxset
, pero desafortunadamente para las listas de longitud considerable sería mucho más lento).
Si desea que se ordene el resultado, en lugar de preservar el orden de cualquiera de las listas, una forma aún más ordenada podría ser:
c = sorted(set(a).intersection(b))
Aquí hay un código de Python 2 / Python 3 que genera información de sincronización tanto para los métodos basados en listas como para establecer la intersección de dos listas.
Los algoritmos de comprensión de la lista pura son O (n ^ 2), ya que in
en una lista hay una búsqueda lineal. Los algoritmos basados en conjuntos son O (n), ya que la búsqueda de conjuntos es O (1), y la creación de conjuntos es O (n) (y convertir un conjunto en una lista también es O (n)). Entonces, para n suficientemente grandes, los algoritmos basados en conjuntos son más rápidos, pero para pequeños n los gastos generales de creación de los conjuntos los hacen más lentos que los algoritmos de compilación de listas puras.
#!/usr/bin/env python
''' Time list- vs set-based list intersection
See http://stackoverflow.com/q/3697432/4014959
Written by PM 2Ring 2015.10.16
'''
from __future__ import print_function, division
from timeit import Timer
setup = 'from __main__ import a, b'
cmd_lista = '[u for u in a if u in b]'
cmd_listb = '[u for u in b if u in a]'
cmd_lcsa = 'sa=set(a);[u for u in b if u in sa]'
cmd_seta = 'list(set(a).intersection(b))'
cmd_setb = 'list(set(b).intersection(a))'
reps = 3
loops = 50000
def do_timing(heading, cmd, setup):
t = Timer(cmd, setup)
r = t.repeat(reps, loops)
r.sort()
print(heading, r)
return r[0]
m = 10
nums = list(range(6 * m))
for n in range(1, m + 1):
a = nums[:6*n:2]
b = nums[:6*n:3]
print('\nn =', n, len(a), len(b))
#print('\nn = %d\n%s %d\n%s %d' % (n, a, len(a), b, len(b)))
la = do_timing('lista', cmd_lista, setup)
lb = do_timing('listb', cmd_listb, setup)
lc = do_timing('lcsa ', cmd_lcsa, setup)
sa = do_timing('seta ', cmd_seta, setup)
sb = do_timing('setb ', cmd_setb, setup)
print(la/sa, lb/sa, lc/sa, la/sb, lb/sb, lc/sb)
salida
n = 1 3 2
lista [0.082171916961669922, 0.082588911056518555, 0.0898590087890625]
listb [0.069530963897705078, 0.070394992828369141, 0.075379848480224609]
lcsa [0.11858987808227539, 0.1188349723815918, 0.12825107574462891]
seta [0.26900982856750488, 0.26902294158935547, 0.27298116683959961]
setb [0.27218389511108398, 0.27459001541137695, 0.34307217597961426]
0.305460649521 0.258469975867 0.440838458259 0.301898526833 0.255455833892 0.435697630214
n = 2 6 4
lista [0.15915989875793457, 0.16000485420227051, 0.16551494598388672]
listb [0.13000702857971191, 0.13060092926025391, 0.13543915748596191]
lcsa [0.18650484085083008, 0.18742108345031738, 0.19513416290283203]
seta [0.33592700958251953, 0.34001994132995605, 0.34146714210510254]
setb [0.29436492919921875, 0.2953648567199707, 0.30039691925048828]
0.473793098554 0.387009751735 0.555194537893 0.540689066428 0.441652573672 0.633583767462
n = 3 9 6
lista [0.27657914161682129, 0.28098297119140625, 0.28311991691589355]
listb [0.21585917472839355, 0.21679902076721191, 0.22272896766662598]
lcsa [0.22559309005737305, 0.2271728515625, 0.2323150634765625]
seta [0.36382699012756348, 0.36453008651733398, 0.36750602722167969]
setb [0.34979605674743652, 0.35533690452575684, 0.36164689064025879]
0.760194128313 0.59330170819 0.62005595016 0.790686848184 0.61710008036 0.644927481902
n = 4 12 8
lista [0.39616990089416504, 0.39746403694152832, 0.41129183769226074]
listb [0.33485794067382812, 0.33914685249328613, 0.37850618362426758]
lcsa [0.27405810356140137, 0.2745978832244873, 0.28249192237854004]
seta [0.39211201667785645, 0.39234519004821777, 0.39317893981933594]
setb [0.36988520622253418, 0.37011313438415527, 0.37571001052856445]
1.01034878821 0.85398540833 0.698928091731 1.07106176249 0.905302334456 0.740927452493
n = 5 15 10
lista [0.56792402267456055, 0.57422614097595215, 0.57740211486816406]
listb [0.47309303283691406, 0.47619009017944336, 0.47628307342529297]
lcsa [0.32805585861206055, 0.32813096046447754, 0.3349759578704834]
seta [0.40036201477050781, 0.40322518348693848, 0.40548801422119141]
setb [0.39103078842163086, 0.39722800254821777, 0.43811702728271484]
1.41852623806 1.18166313332 0.819398061028 1.45237674242 1.20986133789 0.838951479847
n = 6 18 12
lista [0.77897095680236816, 0.78187918663024902, 0.78467702865600586]
listb [0.629547119140625, 0.63210701942443848, 0.63321495056152344]
lcsa [0.36563992500305176, 0.36638498306274414, 0.38175487518310547]
seta [0.46695613861083984, 0.46992206573486328, 0.47583580017089844]
setb [0.47616910934448242, 0.47661614418029785, 0.4850609302520752]
1.66818870637 1.34819326075 0.783028414812 1.63591241329 1.32210827369 0.767878297495
n = 7 21 14
lista [0.9703209400177002, 0.9734041690826416, 1.0182771682739258]
listb [0.82394003868103027, 0.82625699043273926, 0.82796716690063477]
lcsa [0.40975093841552734, 0.41210508346557617, 0.42286920547485352]
seta [0.5086359977722168, 0.50968098640441895, 0.51014018058776855]
setb [0.48688101768493652, 0.4879908561706543, 0.49204087257385254]
1.90769222837 1.61990115188 0.805587768483 1.99293236904 1.69228211566 0.841583309951
n = 8 24 16
lista [1.204819917678833, 1.2206029891967773, 1.258256196975708]
listb [1.014998197555542, 1.0206191539764404, 1.0343101024627686]
lcsa [0.50966787338256836, 0.51018595695495605, 0.51319599151611328]
seta [0.50310111045837402, 0.50556015968322754, 0.51335406303405762]
setb [0.51472997665405273, 0.51948785781860352, 0.52113485336303711]
2.39478683834 2.01748351664 1.01305257092 2.34068341135 1.97190418975 0.990165516871
n = 9 27 18
lista [1.511646032333374, 1.5133969783782959, 1.5639569759368896]
listb [1.2461750507354736, 1.254518985748291, 1.2613379955291748]
lcsa [0.5565330982208252, 0.56119203567504883, 0.56451296806335449]
seta [0.5966339111328125, 0.60275578498840332, 0.64791703224182129]
setb [0.54694414138793945, 0.5508568286895752, 0.55375313758850098]
2.53362406013 2.08867620074 0.932788243907 2.76380331728 2.27843203069 1.01753187594
n = 10 30 20
lista [1.7777848243713379, 2.1453688144683838, 2.4085969924926758]
listb [1.5070111751556396, 1.5202279090881348, 1.5779800415039062]
lcsa [0.5954139232635498, 0.59703707695007324, 0.60746097564697266]
seta [0.61563014984130859, 0.62125110626220703, 0.62354087829589844]
setb [0.56723213195800781, 0.57257509231567383, 0.57460403442382812]
2.88774814689 2.44791645689 0.967161734066 3.13413984189 2.6567803378 1.04968299523
Generado utilizando una máquina de un solo núcleo de 2 GHz con 2 GB de RAM que ejecuta Python 2.6.6 en una versión Debian de Linux (con Firefox ejecutándose en segundo plano).
Estas cifras son solo una guía aproximada, ya que las velocidades reales de los diversos algoritmos se ven afectadas de manera diferente por la proporción de elementos que se encuentran en ambas listas de origen.
Se puede lograr una forma funcional usando filter
y lambda
operador.
list1 = [1,2,3,4,5,6]
list2 = [2,4,6,9,10]
>>> list(filter(lambda x:x in list1, list2))
[2, 4, 6]
Editar: filtra x que existe tanto en la lista1 como en la lista, la diferencia establecida también se puede lograr usando:
>>> list(filter(lambda x:x not in list1, list2))
[9,10]
Edit2: python3 filter
devuelve un objeto de filtro, encapsulado con list
devuelve la lista de salida.
list(filter(lambda x:x in list1, list2))
para obtenerlo como una lista.
Este es un ejemplo cuando necesita Cada elemento en el resultado debe aparecer tantas veces como se muestra en ambas matrices.
def intersection(nums1, nums2):
#example:
#nums1 = [1,2,2,1]
#nums2 = [2,2]
#output = [2,2]
#find first 2 and remove from target, continue iterating
target, iterate = [nums1, nums2] if len(nums2) >= len(nums1) else [nums2, nums1] #iterate will look into target
if len(target) == 0:
return []
i = 0
store = []
while i < len(iterate):
element = iterate[i]
if element in target:
store.append(element)
target.remove(element)
i += 1
return store
Puede que sea tarde, pero solo pensé que debería compartir el caso en el que se requiere que lo haga manualmente (mostrar trabajo - jaja) O cuando necesite que todos los elementos aparezcan tantas veces como sea posible o cuando también necesite que sea único .
Tenga en cuenta que también se han escrito pruebas para ello.
from nose.tools import assert_equal
'''
Given two lists, print out the list of overlapping elements
'''
def overlap(l_a, l_b):
'''
compare the two lists l_a and l_b and return the overlapping
elements (intersecting) between the two
'''
#edge case is when they are the same lists
if l_a == l_b:
return [] #no overlapping elements
output = []
if len(l_a) == len(l_b):
for i in range(l_a): #same length so either one applies
if l_a[i] in l_b:
output.append(l_a[i])
#found all by now
#return output #if repetition does not matter
return list(set(output))
else:
#find the smallest and largest lists and go with that
sm = l_a if len(l_a) len(l_b) else l_b
for i in range(len(sm)):
if sm[i] in lg:
output.append(sm[i])
#return output #if repetition does not matter
return list(set(output))
## Test the Above Implementation
a = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
b = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
exp = [1, 2, 3, 5, 8, 13]
c = [4, 4, 5, 6]
d = [5, 7, 4, 8 ,6 ] #assuming it is not ordered
exp2 = [4, 5, 6]
class TestOverlap(object):
def test(self, sol):
t = sol(a, b)
assert_equal(t, exp)
print('Comparing the two lists produces')
print(t)
t = sol(c, d)
assert_equal(t, exp2)
print('Comparing the two lists produces')
print(t)
print('All Tests Passed!!')
t = TestOverlap()
t.test(overlap)
¡También puedes usar un contador! No conserva el orden, pero considerará los duplicados:
>>> from collections import Counter
>>> a = [1,2,3,4,5]
>>> b = [1,3,5,6]
>>> d1, d2 = Counter(a), Counter(b)
>>> c = [n for n in d1.keys() & d2.keys() for _ in range(min(d1[n], d2[n]))]
>>> print(c)
[1,3,5]
a and b
funciona como la siguiente declaración de la documentación lo menciona: " La expresiónx and y
primero evalúax
; six
es falsa, se devuelve su valor; de lo contrario,y
se evalúa y se devuelve el valor resultante " .