Debe comenzar definiendo qué es un árbol (para el dominio), esto se hace mejor definiendo primero la interfaz . No todas las estructuras de árboles son modificables, poder agregar y eliminar nodos debería ser una característica opcional, por lo que creamos una interfaz adicional para eso.
No hay necesidad de crear objetos de nodo que contengan los valores , de hecho, veo esto como un gran defecto de diseño y sobrecarga en la mayoría de las implementaciones de árbol. Si observa Swing, TreeModel
está libre de clases de nodos (solo DefaultTreeModel
usa TreeNode
), ya que no son realmente necesarias.
public interface Tree <N extends Serializable> extends Serializable {
List<N> getRoots ();
N getParent (N node);
List<N> getChildren (N node);
}
Estructura de árbol mutable (permite agregar y eliminar nodos):
public interface MutableTree <N extends Serializable> extends Tree<N> {
boolean add (N parent, N node);
boolean remove (N node, boolean cascade);
}
Dadas estas interfaces, el código que usa árboles no tiene que preocuparse mucho por cómo se implementa el árbol. Esto le permite utilizar implementaciones genéricas , así como también especializadas , en las que se da cuenta del árbol delegando funciones a otra API.
Ejemplo: estructura de árbol de archivos
public class FileTree implements Tree<File> {
@Override
public List<File> getRoots() {
return Arrays.stream(File.listRoots()).collect(Collectors.toList());
}
@Override
public File getParent(File node) {
return node.getParentFile();
}
@Override
public List<File> getChildren(File node) {
if (node.isDirectory()) {
File[] children = node.listFiles();
if (children != null) {
return Arrays.stream(children).collect(Collectors.toList());
}
}
return Collections.emptyList();
}
}
Ejemplo: estructura de árbol genérica (basada en relaciones padre / hijo):
public class MappedTreeStructure<N extends Serializable> implements MutableTree<N> {
public static void main(String[] args) {
MutableTree<String> tree = new MappedTreeStructure<>();
tree.add("A", "B");
tree.add("A", "C");
tree.add("C", "D");
tree.add("E", "A");
System.out.println(tree);
}
private final Map<N, N> nodeParent = new HashMap<>();
private final LinkedHashSet<N> nodeList = new LinkedHashSet<>();
private void checkNotNull(N node, String parameterName) {
if (node == null)
throw new IllegalArgumentException(parameterName + " must not be null");
}
@Override
public boolean add(N parent, N node) {
checkNotNull(parent, "parent");
checkNotNull(node, "node");
// check for cycles
N current = parent;
do {
if (node.equals(current)) {
throw new IllegalArgumentException(" node must not be the same or an ancestor of the parent");
}
} while ((current = getParent(current)) != null);
boolean added = nodeList.add(node);
nodeList.add(parent);
nodeParent.put(node, parent);
return added;
}
@Override
public boolean remove(N node, boolean cascade) {
checkNotNull(node, "node");
if (!nodeList.contains(node)) {
return false;
}
if (cascade) {
for (N child : getChildren(node)) {
remove(child, true);
}
} else {
for (N child : getChildren(node)) {
nodeParent.remove(child);
}
}
nodeList.remove(node);
return true;
}
@Override
public List<N> getRoots() {
return getChildren(null);
}
@Override
public N getParent(N node) {
checkNotNull(node, "node");
return nodeParent.get(node);
}
@Override
public List<N> getChildren(N node) {
List<N> children = new LinkedList<>();
for (N n : nodeList) {
N parent = nodeParent.get(n);
if (node == null && parent == null) {
children.add(n);
} else if (node != null && parent != null && parent.equals(node)) {
children.add(n);
}
}
return children;
}
@Override
public String toString() {
StringBuilder builder = new StringBuilder();
dumpNodeStructure(builder, null, "- ");
return builder.toString();
}
private void dumpNodeStructure(StringBuilder builder, N node, String prefix) {
if (node != null) {
builder.append(prefix);
builder.append(node.toString());
builder.append('\n');
prefix = " " + prefix;
}
for (N child : getChildren(node)) {
dumpNodeStructure(builder, child, prefix);
}
}
}