Crítica de otras respuestas aquí:
Ninguna de estas respuestas son trozos de tamaño uniforme, todos dejan un trozo runt al final, por lo que no están completamente equilibrados. Si estaba utilizando estas funciones para distribuir el trabajo, ha incorporado la posibilidad de que uno termine mucho antes que los demás, por lo que se quedaría sin hacer nada mientras los demás continuaron trabajando duro.
Por ejemplo, la respuesta principal actual termina con:
[60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
[70, 71, 72, 73, 74]]
¡Solo odio a esa runa al final!
Otros, como list(grouper(3, xrange(7)))
, y chunk(xrange(7), 3)
tanto la rentabilidad: [(0, 1, 2), (3, 4, 5), (6, None, None)]
. Los None
's son solo relleno, y en mi opinión, bastante poco elegantes. NO están fragmentando uniformemente los iterables.
¿Por qué no podemos dividir esto mejor?
Mis soluciones
Aquí hay una solución equilibrada, adaptada de una función que he usado en producción (Nota en Python 3 para reemplazar xrange
a range
):
def baskets_from(items, maxbaskets=25):
baskets = [[] for _ in xrange(maxbaskets)] # in Python 3 use range
for i, item in enumerate(items):
baskets[i % maxbaskets].append(item)
return filter(None, baskets)
Y creé un generador que hace lo mismo si lo pones en una lista:
def iter_baskets_from(items, maxbaskets=3):
'''generates evenly balanced baskets from indexable iterable'''
item_count = len(items)
baskets = min(item_count, maxbaskets)
for x_i in xrange(baskets):
yield [items[y_i] for y_i in xrange(x_i, item_count, baskets)]
Y finalmente, ya que veo que todas las funciones anteriores devuelven elementos en un orden contiguo (como se les dio):
def iter_baskets_contiguous(items, maxbaskets=3, item_count=None):
'''
generates balanced baskets from iterable, contiguous contents
provide item_count if providing a iterator that doesn't support len()
'''
item_count = item_count or len(items)
baskets = min(item_count, maxbaskets)
items = iter(items)
floor = item_count // baskets
ceiling = floor + 1
stepdown = item_count % baskets
for x_i in xrange(baskets):
length = ceiling if x_i < stepdown else floor
yield [items.next() for _ in xrange(length)]
Salida
Para probarlos:
print(baskets_from(xrange(6), 8))
print(list(iter_baskets_from(xrange(6), 8)))
print(list(iter_baskets_contiguous(xrange(6), 8)))
print(baskets_from(xrange(22), 8))
print(list(iter_baskets_from(xrange(22), 8)))
print(list(iter_baskets_contiguous(xrange(22), 8)))
print(baskets_from('ABCDEFG', 3))
print(list(iter_baskets_from('ABCDEFG', 3)))
print(list(iter_baskets_contiguous('ABCDEFG', 3)))
print(baskets_from(xrange(26), 5))
print(list(iter_baskets_from(xrange(26), 5)))
print(list(iter_baskets_contiguous(xrange(26), 5)))
Que imprime:
[[0], [1], [2], [3], [4], [5]]
[[0], [1], [2], [3], [4], [5]]
[[0], [1], [2], [3], [4], [5]]
[[0, 8, 16], [1, 9, 17], [2, 10, 18], [3, 11, 19], [4, 12, 20], [5, 13, 21], [6, 14], [7, 15]]
[[0, 8, 16], [1, 9, 17], [2, 10, 18], [3, 11, 19], [4, 12, 20], [5, 13, 21], [6, 14], [7, 15]]
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11], [12, 13, 14], [15, 16, 17], [18, 19], [20, 21]]
[['A', 'D', 'G'], ['B', 'E'], ['C', 'F']]
[['A', 'D', 'G'], ['B', 'E'], ['C', 'F']]
[['A', 'B', 'C'], ['D', 'E'], ['F', 'G']]
[[0, 5, 10, 15, 20, 25], [1, 6, 11, 16, 21], [2, 7, 12, 17, 22], [3, 8, 13, 18, 23], [4, 9, 14, 19, 24]]
[[0, 5, 10, 15, 20, 25], [1, 6, 11, 16, 21], [2, 7, 12, 17, 22], [3, 8, 13, 18, 23], [4, 9, 14, 19, 24]]
[[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25]]
Tenga en cuenta que el generador contiguo proporciona fragmentos en los mismos patrones de longitud que los otros dos, pero los elementos están todos en orden y están divididos de manera tan uniforme como uno puede dividir una lista de elementos discretos.