Genere colores RGB claramente diferentes en gráficos


84

Al generar gráficos y mostrar diferentes conjuntos de datos, suele ser una buena idea diferenciar los conjuntos por color. Entonces, una línea es roja y la siguiente es verde, y así sucesivamente. El problema es entonces que cuando se desconoce el número de conjuntos de datos, es necesario generar estos colores aleatoriamente y, a menudo, terminan muy cerca uno del otro (verde, verde claro, por ejemplo).

¿Alguna idea sobre cómo podría resolverse esto y cómo sería posible generar colores claramente diferentes?

Sería genial si algún ejemplo (siéntase libre de discutir el problema y la solución sin ejemplos si lo encuentra más fácil) estuviera en colores basados ​​en C # y RGB.


Respuestas:


132

Tiene tres canales de color de 0 a 255 R, G y B.

Primero pasa por

0, 0, 255
0, 255, 0
255, 0, 0

Entonces pasa por

0, 255, 255
255, 0, 255
255, 255, 0

Luego divida por 2 => 128 y comience de nuevo:

0, 0, 128
0, 128, 0
128, 0, 0
0, 128, 128
128, 0, 128
128, 128, 0

Dividir por 2 => 64

La próxima vez agregue 64 a 128 => 192

seguir el modelo.

Fácil de programar y ofrece colores bastante distintos.

EDITAR: Solicitud de muestra de código

Además, agregue el patrón adicional como se muestra a continuación si el gris es un color aceptable:

255, 255, 255
128, 128, 128 

Hay varias formas de manejar la generación de estos en código.

La manera fácil

Si puede garantizar que nunca necesitará más de un número fijo de colores, simplemente genere una matriz de colores siguiendo este patrón y utilícelos:

    static string[] ColourValues = new string[] { 
        "FF0000", "00FF00", "0000FF", "FFFF00", "FF00FF", "00FFFF", "000000", 
        "800000", "008000", "000080", "808000", "800080", "008080", "808080", 
        "C00000", "00C000", "0000C0", "C0C000", "C000C0", "00C0C0", "C0C0C0", 
        "400000", "004000", "000040", "404000", "400040", "004040", "404040", 
        "200000", "002000", "000020", "202000", "200020", "002020", "202020", 
        "600000", "006000", "000060", "606000", "600060", "006060", "606060", 
        "A00000", "00A000", "0000A0", "A0A000", "A000A0", "00A0A0", "A0A0A0", 
        "E00000", "00E000", "0000E0", "E0E000", "E000E0", "00E0E0", "E0E0E0", 
    };

El camino difícil

Si no sabe cuántos colores va a necesitar, el siguiente código generará hasta 896 colores con este patrón. (896 = 256 * 7/2) 256 es el espacio de color por canal, tenemos 7 patrones y nos detenemos antes de llegar a colores separados por solo 1 valor de color.

Probablemente he hecho un trabajo más duro con este código de lo necesario. Primero, hay un generador de intensidad que comienza en 255, luego genera los valores según el patrón descrito anteriormente. El generador de patrones simplemente recorre los siete patrones de color.

using System;

class Program {
    static void Main(string[] args) {
        ColourGenerator generator = new ColourGenerator();
        for (int i = 0; i < 896; i++) {
            Console.WriteLine(string.Format("{0}: {1}", i, generator.NextColour()));
        }
    }
}

public class ColourGenerator {

    private int index = 0;
    private IntensityGenerator intensityGenerator = new IntensityGenerator();

    public string NextColour() {
        string colour = string.Format(PatternGenerator.NextPattern(index),
            intensityGenerator.NextIntensity(index));
        index++;
        return colour;
    }
}

public class PatternGenerator {
    public static string NextPattern(int index) {
        switch (index % 7) {
        case 0: return "{0}0000";
        case 1: return "00{0}00";
        case 2: return "0000{0}";
        case 3: return "{0}{0}00";
        case 4: return "{0}00{0}";
        case 5: return "00{0}{0}";
        case 6: return "{0}{0}{0}";
        default: throw new Exception("Math error");
        }
    }
}

public class IntensityGenerator {
    private IntensityValueWalker walker;
    private int current;

    public string NextIntensity(int index) {
        if (index == 0) {
            current = 255;
        }
        else if (index % 7 == 0) {
            if (walker == null) {
                walker = new IntensityValueWalker();
            }
            else {
                walker.MoveNext();
            }
            current = walker.Current.Value;
        }
        string currentText = current.ToString("X");
        if (currentText.Length == 1) currentText = "0" + currentText;
        return currentText;
    }
}

public class IntensityValue {

    private IntensityValue mChildA;
    private IntensityValue mChildB;

    public IntensityValue(IntensityValue parent, int value, int level) {
        if (level > 7) throw new Exception("There are no more colours left");
        Value = value;
        Parent = parent;
        Level = level;
    }

    public int Level { get; set; }
    public int Value { get; set; }
    public IntensityValue Parent { get; set; }

    public IntensityValue ChildA {
        get {
            return mChildA ?? (mChildA = new IntensityValue(this, this.Value - (1<<(7-Level)), Level+1));
        }
    }

    public IntensityValue ChildB {
        get {
            return mChildB ?? (mChildB = new IntensityValue(this, Value + (1<<(7-Level)), Level+1));
        }
    }
}

public class IntensityValueWalker {

    public IntensityValueWalker() {
        Current = new IntensityValue(null, 1<<7, 1);
    }

    public IntensityValue Current { get; set; }

    public void MoveNext() {
        if (Current.Parent == null) {
            Current = Current.ChildA;
        }
        else if (Current.Parent.ChildA == Current) {
            Current = Current.Parent.ChildB;
        }
        else {
            int levelsUp = 1;
            Current = Current.Parent;
            while (Current.Parent != null && Current == Current.Parent.ChildB) {
                Current = Current.Parent;
                levelsUp++;
            }
            if (Current.Parent != null) {
                Current = Current.Parent.ChildB;
            }
            else {
                levelsUp++;
            }
            for (int i = 0; i < levelsUp; i++) {
                Current = Current.ChildA;
            }

        }
    }
}

No sigo completamente el ejemplo. ¿Alguien puede proporcionar un ejemplo de C # para esto?
McBainUK

Espero que la muestra de código ayude; probablemente haya una forma mucho más limpia de recorrer el árbol de valores de intensidad, pero esta fue una primera prueba que funcionó lo suficientemente bien. Salud.
Sam Meldrum

4
Tenga en cuenta que este algoritmo producirá algunos pares de colores que son MUY similares (particularmente en regiones muy oscuras o claras, de baja saturación). Hace un buen trabajo al comenzar en regiones de alta saturación y luminosidad, pero pierde muchos colores sutiles que aún son visualmente distintos.
Phrogz

1
Terminé haciendo algo similar en Javascript: parece haber una muleta mental / una construcción de reactivo limitante en rgb. Si tuviéramos cuatro canales de color de 256 opciones, ¿escribiríamos fórmulas con (* n ) más colores? Aun así, las críticas de @Phrogz y @dean seguirían en pie (y es por eso que busqué SO para una mejor respuesta). Tiene que haber una forma de captar tonos claramente diferentes en cada paso de intensidad. La respuesta de Phrogz, a continuación , está en el camino correcto, pero no es rápidamente accesible para peones como yo si quiero cientos de colores por algún intcontador.
ruffin

2
Agregué una respuesta resolviendo programáticamente la pregunta. Esta respuesta aquí es realmente incorrecta. Cuando agrega 128 a la mezcla. No solo lo modela con 0. Lo modela con 0 Y 255. La lista de colores "Easy Way" está igualmente dividida a este respecto. Esos son básicamente blancos, negros, R, G, B, C, Y, M progresivamente más y más tenues.
Tatarizar

79

Para implementar una lista de variaciones en la que vayan sus colores, 255 luego use todas las posibilidades de eso, luego agregue 0 y todos los patrones RGB con esos dos valores. Luego agregue 128 y todas las combinaciones RGB con esos. Luego 64. Luego 192. Etc.

En Java,

public Color getColor(int i) {
    return new Color(getRGB(i));
}

public int getRGB(int index) {
    int[] p = getPattern(index);
    return getElement(p[0]) << 16 | getElement(p[1]) << 8 | getElement(p[2]);
}

public int getElement(int index) {
    int value = index - 1;
    int v = 0;
    for (int i = 0; i < 8; i++) {
        v = v | (value & 1);
        v <<= 1;
        value >>= 1;
    }
    v >>= 1;
    return v & 0xFF;
}

public int[] getPattern(int index) {
    int n = (int)Math.cbrt(index);
    index -= (n*n*n);
    int[] p = new int[3];
    Arrays.fill(p,n);
    if (index == 0) {
        return p;
    }
    index--;
    int v = index % 3;
    index = index / 3;
    if (index < n) {
        p[v] = index % n;
        return p;
    }
    index -= n;
    p[v      ] = index / n;
    p[++v % 3] = index % n;
    return p;
}

Esto producirá patrones de ese tipo infinitamente (2 ^ 24) en el futuro. Sin embargo, después de un centenar de puntos, es probable que no veas mucha diferencia entre un color con 0 o 32 en el lugar del azul.

Puede que sea mejor normalizar esto en un espacio de color diferente. Espacio de color LAB, por ejemplo, con los valores L, A, B normalizados y convertidos. Entonces, la distinción del color se transmite a través de algo más parecido al ojo humano.

getElement () invierte el endian de un número de 8 bits y comienza a contar desde -1 en lugar de 0 (enmascarando con 255). Entonces pasa a 255,0,127,192,64, ... a medida que el número crece, se mueven cada vez menos bits significativos, subdividiendo el número.

getPattern () determina cuál debería ser el elemento más significativo en el patrón (es la raíz cúbica). Luego procede a desglosar los patrones diferentes 3N² + 3N + 1 que involucran al elemento más significativo.

Este algoritmo producirá (primeros 128 valores):

#FFFFFF 
#000000 
#FF0000 
#00FF00 
#0000FF 
#FFFF00 
#00FFFF 
#FF00FF 
#808080 
#FF8080 
#80FF80 
#8080FF 
#008080 
#800080 
#808000 
#FFFF80 
#80FFFF 
#FF80FF 
#FF0080 
#80FF00 
#0080FF 
#00FF80 
#8000FF 
#FF8000 
#000080 
#800000 
#008000 
#404040 
#FF4040 
#40FF40 
#4040FF 
#004040 
#400040 
#404000 
#804040 
#408040 
#404080 
#FFFF40 
#40FFFF 
#FF40FF 
#FF0040 
#40FF00 
#0040FF 
#FF8040 
#40FF80 
#8040FF 
#00FF40 
#4000FF 
#FF4000 
#000040 
#400000 
#004000 
#008040 
#400080 
#804000 
#80FF40 
#4080FF 
#FF4080 
#800040 
#408000 
#004080 
#808040 
#408080 
#804080 
#C0C0C0 
#FFC0C0 
#C0FFC0 
#C0C0FF 
#00C0C0 
#C000C0 
#C0C000 
#80C0C0 
#C080C0 
#C0C080 
#40C0C0 
#C040C0 
#C0C040 
#FFFFC0 
#C0FFFF 
#FFC0FF 
#FF00C0 
#C0FF00 
#00C0FF 
#FF80C0 
#C0FF80 
#80C0FF 
#FF40C0 
#C0FF40 
#40C0FF 
#00FFC0 
#C000FF 
#FFC000 
#0000C0 
#C00000 
#00C000 
#0080C0 
#C00080 
#80C000 
#0040C0 
#C00040 
#40C000 
#80FFC0 
#C080FF 
#FFC080 
#8000C0 
#C08000 
#00C080 
#8080C0 
#C08080 
#80C080 
#8040C0 
#C08040 
#40C080 
#40FFC0 
#C040FF 
#FFC040 
#4000C0 
#C04000 
#00C040 
#4080C0 
#C04080 
#80C040 
#4040C0 
#C04040 
#40C040 
#202020 
#FF2020 
#20FF20 

Leer de izquierda a derecha, de arriba a abajo. 729 colores (9³). Entonces, todos los patrones hasta n = 9. Notarás la velocidad a la que comienzan a chocar. Hay tantas variaciones de WRGBCYMK. Y esta solución, aunque inteligente, básicamente solo hace diferentes tonos de colores primarios.

Cuadrícula de color, 729 16x16

Gran parte del conflicto se debe al verde y a lo similares que parecen la mayoría de los verdes para la mayoría de las personas. La exigencia de que cada uno sea lo más diferente al principio en lugar de lo suficientemente diferente como para no ser del mismo color. Y fallas básicas en la idea que resultan en patrones de colores primarios y tonalidades idénticas.


El uso de la rutina de distancia y espacio de color CIELab2000 para seleccionar aleatoriamente y probar 10k colores diferentes y encontrar la distancia mínima máximamente distante de los colores anteriores (prácticamente la definición de la solicitud) evita choques más largos que la solución anterior:

Distancia máxima de color

Lo que podría llamarse simplemente una lista estática para Easy Way. Se tardó una hora y media en generar 729 entradas:

#9BC4E5
#310106
#04640D
#FEFB0A
#FB5514
#E115C0
#00587F
#0BC582
#FEB8C8
#9E8317
#01190F
#847D81
#58018B
#B70639
#703B01
#F7F1DF
#118B8A
#4AFEFA
#FCB164
#796EE6
#000D2C
#53495F
#F95475
#61FC03
#5D9608
#DE98FD
#98A088
#4F584E
#248AD0
#5C5300
#9F6551
#BCFEC6
#932C70
#2B1B04
#B5AFC4
#D4C67A
#AE7AA1
#C2A393
#0232FD
#6A3A35
#BA6801
#168E5C
#16C0D0
#C62100
#014347
#233809
#42083B
#82785D
#023087
#B7DAD2
#196956
#8C41BB
#ECEDFE
#2B2D32
#94C661
#F8907D
#895E6B
#788E95
#FB6AB8
#576094
#DB1474
#8489AE
#860E04
#FBC206
#6EAB9B
#F2CDFE
#645341
#760035
#647A41
#496E76
#E3F894
#F9D7CD
#876128
#A1A711
#01FB92
#FD0F31
#BE8485
#C660FB
#120104
#D48958
#05AEE8
#C3C1BE
#9F98F8
#1167D9
#D19012
#B7D802
#826392
#5E7A6A
#B29869
#1D0051
#8BE7FC
#76E0C1
#BACFA7
#11BA09
#462C36
#65407D
#491803
#F5D2A8
#03422C
#72A46E
#128EAC
#47545E
#B95C69
#A14D12
#C4C8FA
#372A55
#3F3610
#D3A2C6
#719FFA
#0D841A
#4C5B32
#9DB3B7
#B14F8F
#747103
#9F816D
#D26A5B
#8B934B
#F98500
#002935
#D7F3FE
#FCB899
#1C0720
#6B5F61
#F98A9D
#9B72C2
#A6919D
#2C3729
#D7C70B
#9F9992
#EFFBD0
#FDE2F1
#923A52
#5140A7
#BC14FD
#6D706C
#0007C4
#C6A62F
#000C14
#904431
#600013
#1C1B08
#693955
#5E7C99
#6C6E82
#D0AFB3
#493B36
#AC93CE
#C4BA9C
#09C4B8
#69A5B8
#374869
#F868ED
#E70850
#C04841
#C36333
#700366
#8A7A93
#52351D
#B503A2
#D17190
#A0F086
#7B41FC
#0EA64F
#017499
#08A882
#7300CD
#A9B074
#4E6301
#AB7E41
#547FF4
#134DAC
#FDEC87
#056164
#FE12A0
#C264BA
#939DAD
#0BCDFA
#277442
#1BDE4A
#826958
#977678
#BAFCE8
#7D8475
#8CCF95
#726638
#FEA8EB
#EAFEF0
#6B9279
#C2FE4B
#304041
#1EA6A7
#022403
#062A47
#054B17
#F4C673
#02FEC7
#9DBAA8
#775551
#835536
#565BCC
#80D7D2
#7AD607
#696F54
#87089A
#664B19
#242235
#7DB00D
#BFC7D6
#D5A97E
#433F31
#311A18
#FDB2AB
#D586C9
#7A5FB1
#32544A
#EFE3AF
#859D96
#2B8570
#8B282D
#E16A07
#4B0125
#021083
#114558
#F707F9
#C78571
#7FB9BC
#FC7F4B
#8D4A92
#6B3119
#884F74
#994E4F
#9DA9D3
#867B40
#CED5C4
#1CA2FE
#D9C5B4
#FEAA00
#507B01
#A7D0DB
#53858D
#588F4A
#FBEEEC
#FC93C1
#D7CCD4
#3E4A02
#C8B1E2
#7A8B62
#9A5AE2
#896C04
#B1121C
#402D7D
#858701
#D498A6
#B484EF
#5C474C
#067881
#C0F9FC
#726075
#8D3101
#6C93B2
#A26B3F
#AA6582
#4F4C4F
#5A563D
#E83005
#32492D
#FC7272
#B9C457
#552A5B
#B50464
#616E79
#DCE2E4
#CF8028
#0AE2F0
#4F1E24
#FD5E46
#4B694E
#C5DEFC
#5DC262
#022D26
#7776B8
#FD9F66
#B049B8
#988F73
#BE385A
#2B2126
#54805A
#141B55
#67C09B
#456989
#DDC1D9
#166175
#C1E29C
#A397B5
#2E2922
#ABDBBE
#B4A6A8
#A06B07
#A99949
#0A0618
#B14E2E
#60557D
#D4A556
#82A752
#4A005B
#3C404F
#6E6657
#7E8BD5
#1275B8
#D79E92
#230735
#661849
#7A8391
#FE0F7B
#B0B6A9
#629591
#D05591
#97B68A
#97939A
#035E38
#53E19E
#DFD7F9
#02436C
#525A72
#059A0E
#3E736C
#AC8E87
#D10C92
#B9906E
#66BDFD
#C0ABFD
#0734BC
#341224
#8AAAC1
#0E0B03
#414522
#6A2F3E
#2D9A8A
#4568FD
#FDE6D2
#FEE007
#9A003C
#AC8190
#DCDD58
#B7903D
#1F2927
#9B02E6
#827A71
#878B8A
#8F724F
#AC4B70
#37233B
#385559
#F347C7
#9DB4FE
#D57179
#DE505A
#37F7DD
#503500
#1C2401
#DD0323
#00A4BA
#955602
#FA5B94
#AA766C
#B8E067
#6A807E
#4D2E27
#73BED7
#D7BC8A
#614539
#526861
#716D96
#829A17
#210109
#436C2D
#784955
#987BAB
#8F0152
#0452FA
#B67757
#A1659F
#D4F8D8
#48416F
#DEBAAF
#A5A9AA
#8C6B83
#403740
#70872B
#D9744D
#151E2C
#5C5E5E
#B47C02
#F4CBD0
#E49D7D
#DD9954
#B0A18B
#2B5308
#EDFD64
#9D72FC
#2A3351
#68496C
#C94801
#EED05E
#826F6D
#E0D6BB
#5B6DB4
#662F98
#0C97CA
#C1CA89
#755A03
#DFA619
#CD70A8
#BBC9C7
#F6BCE3
#A16462
#01D0AA
#87C6B3
#E7B2FA
#D85379
#643AD5
#D18AAE
#13FD5E
#B3E3FD
#C977DB
#C1A7BB
#9286CB
#A19B6A
#8FFED7
#6B1F17
#DF503A
#10DDD7
#9A8457
#60672F
#7D327D
#DD8782
#59AC42
#82FDB8
#FC8AE7
#909F6F
#B691AE
#B811CD
#BCB24E
#CB4BD9
#2B2304
#AA9501
#5D5096
#403221
#F9FAB4
#3990FC
#70DE7F
#95857F
#84A385
#50996F
#797B53
#7B6142
#81D5FE
#9CC428
#0B0438
#3E2005
#4B7C91
#523854
#005EA9
#F0C7AD
#ACB799
#FAC08E
#502239
#BFAB6A
#2B3C48
#0EB5D8
#8A5647
#49AF74
#067AE9
#F19509
#554628
#4426A4
#7352C9
#3F4287
#8B655E
#B480BF
#9BA74C
#5F514C
#CC9BDC
#BA7942
#1C4138
#3C3C3A
#29B09C
#02923F
#701D2B
#36577C
#3F00EA
#3D959E
#440601
#8AEFF3
#6D442A
#BEB1A8
#A11C02
#8383FE
#A73839
#DBDE8A
#0283B3
#888597
#32592E
#F5FDFA
#01191B
#AC707A
#B6BD03
#027B59
#7B4F08
#957737
#83727D
#035543
#6F7E64
#C39999
#52847A
#925AAC
#77CEDA
#516369
#E0D7D0
#FCDD97
#555424
#96E6B6
#85BB74
#5E2074
#BD5E48
#9BEE53
#1A351E
#3148CD
#71575F
#69A6D0
#391A62
#E79EA0
#1C0F03
#1B1636
#D20C39
#765396
#7402FE
#447F3E
#CFD0A8
#3A2600
#685AFC
#A4B3C6
#534302
#9AA097
#FD5154
#9B0085
#403956
#80A1A7
#6E7A9A
#605E6A
#86F0E2
#5A2B01
#7E3D43
#ED823B
#32331B
#424837
#40755E
#524F48
#B75807
#B40080
#5B8CA1
#FDCFE5
#CCFEAC
#755847
#CAB296
#C0D6E3
#2D7100
#D5E4DE
#362823
#69C63C
#AC3801
#163132
#4750A6
#61B8B2
#FCC4B5
#DEBA2E
#FE0449
#737930
#8470AB
#687D87
#D7B760
#6AAB86
#8398B8
#B7B6BF
#92C4A1
#B6084F
#853B5E
#D0BCBA
#92826D
#C6DDC6
#BE5F5A
#280021
#435743
#874514
#63675A
#E97963
#8F9C9E
#985262
#909081
#023508
#DDADBF
#D78493
#363900
#5B0120
#603C47
#C3955D
#AC61CB
#FD7BA7
#716C74
#8D895B
#071001
#82B4F2
#B6BBD8
#71887A
#8B9FE3
#997158
#65A6AB
#2E3067
#321301
#FEECCB
#3B5E72
#C8FE85
#A1DCDF
#CB49A6
#B1C5E4
#3E5EB0
#88AEA7
#04504C
#975232
#6786B9
#068797
#9A98C4
#A1C3C2
#1C3967
#DBEA07
#789658
#E7E7C6
#A6C886
#957F89
#752E62
#171518
#A75648
#01D26F
#0F535D
#047E76
#C54754
#5D6E88
#AB9483
#803B99
#FA9C48
#4A8A22
#654A5C
#965F86
#9D0CBB
#A0E8A0
#D3DBFA
#FD908F
#AEAB85
#A13B89
#F1B350
#066898
#948A42
#C8BEDE
#19252C
#7046AA
#E1EEFC
#3E6557
#CD3F26
#2B1925
#DDAD94
#C0B109
#37DFFE
#039676
#907468
#9E86A5
#3A1B49
#BEE5B7
#C29501
#9E3645
#DC580A
#645631
#444B4B
#FD1A63
#DDE5AE
#887800
#36006F
#3A6260
#784637
#FEA0B7
#A3E0D2
#6D6316
#5F7172
#B99EC7
#777A7E
#E0FEFD
#E16DC5
#01344B
#F8F8FC
#9F9FB5
#182617
#FE3D21
#7D0017
#822F21
#EFD9DC
#6E68C4
#35473E
#007523
#767667
#A6825D
#83DC5F
#227285
#A95E34
#526172
#979730
#756F6D
#716259
#E8B2B5
#B6C9BB
#9078DA
#4F326E
#B2387B
#888C6F
#314B5F
#E5B678
#38A3C6
#586148
#5C515B
#CDCCE1
#C8977F

El uso de fuerza bruta para (probar los 16.777.216 colores RGB a través de CIELab Delta2000 / Comenzando con negro) produce una serie. Lo que comienza a chocar alrededor de los 26, pero podría llegar a 30 o 40 con inspección visual y caída manual (que no se puede hacer con una computadora). Entonces, al hacer el máximo absoluto, uno solo puede generar un par de docenas de colores distintos mediante programación. Una lista discreta es tu mejor opción. Obtendrá colores más discretos con una lista de los que obtendría mediante programación. La forma fácil es la mejor solución, comience a mezclar y combinar con otras formas de alterar sus datos además del color.

Máximamente diferente

#000000
#00FF00
#0000FF
#FF0000
#01FFFE
#FFA6FE
#FFDB66
#006401
#010067
#95003A
#007DB5
#FF00F6
#FFEEE8
#774D00
#90FB92
#0076FF
#D5FF00
#FF937E
#6A826C
#FF029D
#FE8900
#7A4782
#7E2DD2
#85A900
#FF0056
#A42400
#00AE7E
#683D3B
#BDC6FF
#263400
#BDD393
#00B917
#9E008E
#001544
#C28C9F
#FF74A3
#01D0FF
#004754
#E56FFE
#788231
#0E4CA1
#91D0CB
#BE9970
#968AE8
#BB8800
#43002C
#DEFF74
#00FFC6
#FFE502
#620E00
#008F9C
#98FF52
#7544B1
#B500FF
#00FF78
#FF6E41
#005F39
#6B6882
#5FAD4E
#A75740
#A5FFD2
#FFB167
#009BFF
#E85EBE

Actualización: continué esto durante aproximadamente un mes, a 1024 de fuerza bruta. 1024

public static final String[] indexcolors = new String[]{
        "#000000", "#FFFF00", "#1CE6FF", "#FF34FF", "#FF4A46", "#008941", "#006FA6", "#A30059",
        "#FFDBE5", "#7A4900", "#0000A6", "#63FFAC", "#B79762", "#004D43", "#8FB0FF", "#997D87",
        "#5A0007", "#809693", "#FEFFE6", "#1B4400", "#4FC601", "#3B5DFF", "#4A3B53", "#FF2F80",
        "#61615A", "#BA0900", "#6B7900", "#00C2A0", "#FFAA92", "#FF90C9", "#B903AA", "#D16100",
        "#DDEFFF", "#000035", "#7B4F4B", "#A1C299", "#300018", "#0AA6D8", "#013349", "#00846F",
        "#372101", "#FFB500", "#C2FFED", "#A079BF", "#CC0744", "#C0B9B2", "#C2FF99", "#001E09",
        "#00489C", "#6F0062", "#0CBD66", "#EEC3FF", "#456D75", "#B77B68", "#7A87A1", "#788D66",
        "#885578", "#FAD09F", "#FF8A9A", "#D157A0", "#BEC459", "#456648", "#0086ED", "#886F4C",
        "#34362D", "#B4A8BD", "#00A6AA", "#452C2C", "#636375", "#A3C8C9", "#FF913F", "#938A81",
        "#575329", "#00FECF", "#B05B6F", "#8CD0FF", "#3B9700", "#04F757", "#C8A1A1", "#1E6E00",
        "#7900D7", "#A77500", "#6367A9", "#A05837", "#6B002C", "#772600", "#D790FF", "#9B9700",
        "#549E79", "#FFF69F", "#201625", "#72418F", "#BC23FF", "#99ADC0", "#3A2465", "#922329",
        "#5B4534", "#FDE8DC", "#404E55", "#0089A3", "#CB7E98", "#A4E804", "#324E72", "#6A3A4C",
        "#83AB58", "#001C1E", "#D1F7CE", "#004B28", "#C8D0F6", "#A3A489", "#806C66", "#222800",
        "#BF5650", "#E83000", "#66796D", "#DA007C", "#FF1A59", "#8ADBB4", "#1E0200", "#5B4E51",
        "#C895C5", "#320033", "#FF6832", "#66E1D3", "#CFCDAC", "#D0AC94", "#7ED379", "#012C58",
        "#7A7BFF", "#D68E01", "#353339", "#78AFA1", "#FEB2C6", "#75797C", "#837393", "#943A4D",
        "#B5F4FF", "#D2DCD5", "#9556BD", "#6A714A", "#001325", "#02525F", "#0AA3F7", "#E98176",
        "#DBD5DD", "#5EBCD1", "#3D4F44", "#7E6405", "#02684E", "#962B75", "#8D8546", "#9695C5",
        "#E773CE", "#D86A78", "#3E89BE", "#CA834E", "#518A87", "#5B113C", "#55813B", "#E704C4",
        "#00005F", "#A97399", "#4B8160", "#59738A", "#FF5DA7", "#F7C9BF", "#643127", "#513A01",
        "#6B94AA", "#51A058", "#A45B02", "#1D1702", "#E20027", "#E7AB63", "#4C6001", "#9C6966",
        "#64547B", "#97979E", "#006A66", "#391406", "#F4D749", "#0045D2", "#006C31", "#DDB6D0",
        "#7C6571", "#9FB2A4", "#00D891", "#15A08A", "#BC65E9", "#FFFFFE", "#C6DC99", "#203B3C",
        "#671190", "#6B3A64", "#F5E1FF", "#FFA0F2", "#CCAA35", "#374527", "#8BB400", "#797868",
        "#C6005A", "#3B000A", "#C86240", "#29607C", "#402334", "#7D5A44", "#CCB87C", "#B88183",
        "#AA5199", "#B5D6C3", "#A38469", "#9F94F0", "#A74571", "#B894A6", "#71BB8C", "#00B433",
        "#789EC9", "#6D80BA", "#953F00", "#5EFF03", "#E4FFFC", "#1BE177", "#BCB1E5", "#76912F",
        "#003109", "#0060CD", "#D20096", "#895563", "#29201D", "#5B3213", "#A76F42", "#89412E",
        "#1A3A2A", "#494B5A", "#A88C85", "#F4ABAA", "#A3F3AB", "#00C6C8", "#EA8B66", "#958A9F",
        "#BDC9D2", "#9FA064", "#BE4700", "#658188", "#83A485", "#453C23", "#47675D", "#3A3F00",
        "#061203", "#DFFB71", "#868E7E", "#98D058", "#6C8F7D", "#D7BFC2", "#3C3E6E", "#D83D66",
        "#2F5D9B", "#6C5E46", "#D25B88", "#5B656C", "#00B57F", "#545C46", "#866097", "#365D25",
        "#252F99", "#00CCFF", "#674E60", "#FC009C", "#92896B", "#1E2324", "#DEC9B2", "#9D4948",
        "#85ABB4", "#342142", "#D09685", "#A4ACAC", "#00FFFF", "#AE9C86", "#742A33", "#0E72C5",
        "#AFD8EC", "#C064B9", "#91028C", "#FEEDBF", "#FFB789", "#9CB8E4", "#AFFFD1", "#2A364C",
        "#4F4A43", "#647095", "#34BBFF", "#807781", "#920003", "#B3A5A7", "#018615", "#F1FFC8",
        "#976F5C", "#FF3BC1", "#FF5F6B", "#077D84", "#F56D93", "#5771DA", "#4E1E2A", "#830055",
        "#02D346", "#BE452D", "#00905E", "#BE0028", "#6E96E3", "#007699", "#FEC96D", "#9C6A7D",
        "#3FA1B8", "#893DE3", "#79B4D6", "#7FD4D9", "#6751BB", "#B28D2D", "#E27A05", "#DD9CB8",
        "#AABC7A", "#980034", "#561A02", "#8F7F00", "#635000", "#CD7DAE", "#8A5E2D", "#FFB3E1",
        "#6B6466", "#C6D300", "#0100E2", "#88EC69", "#8FCCBE", "#21001C", "#511F4D", "#E3F6E3",
        "#FF8EB1", "#6B4F29", "#A37F46", "#6A5950", "#1F2A1A", "#04784D", "#101835", "#E6E0D0",
        "#FF74FE", "#00A45F", "#8F5DF8", "#4B0059", "#412F23", "#D8939E", "#DB9D72", "#604143",
        "#B5BACE", "#989EB7", "#D2C4DB", "#A587AF", "#77D796", "#7F8C94", "#FF9B03", "#555196",
        "#31DDAE", "#74B671", "#802647", "#2A373F", "#014A68", "#696628", "#4C7B6D", "#002C27",
        "#7A4522", "#3B5859", "#E5D381", "#FFF3FF", "#679FA0", "#261300", "#2C5742", "#9131AF",
        "#AF5D88", "#C7706A", "#61AB1F", "#8CF2D4", "#C5D9B8", "#9FFFFB", "#BF45CC", "#493941",
        "#863B60", "#B90076", "#003177", "#C582D2", "#C1B394", "#602B70", "#887868", "#BABFB0",
        "#030012", "#D1ACFE", "#7FDEFE", "#4B5C71", "#A3A097", "#E66D53", "#637B5D", "#92BEA5",
        "#00F8B3", "#BEDDFF", "#3DB5A7", "#DD3248", "#B6E4DE", "#427745", "#598C5A", "#B94C59",
        "#8181D5", "#94888B", "#FED6BD", "#536D31", "#6EFF92", "#E4E8FF", "#20E200", "#FFD0F2",
        "#4C83A1", "#BD7322", "#915C4E", "#8C4787", "#025117", "#A2AA45", "#2D1B21", "#A9DDB0",
        "#FF4F78", "#528500", "#009A2E", "#17FCE4", "#71555A", "#525D82", "#00195A", "#967874",
        "#555558", "#0B212C", "#1E202B", "#EFBFC4", "#6F9755", "#6F7586", "#501D1D", "#372D00",
        "#741D16", "#5EB393", "#B5B400", "#DD4A38", "#363DFF", "#AD6552", "#6635AF", "#836BBA",
        "#98AA7F", "#464836", "#322C3E", "#7CB9BA", "#5B6965", "#707D3D", "#7A001D", "#6E4636",
        "#443A38", "#AE81FF", "#489079", "#897334", "#009087", "#DA713C", "#361618", "#FF6F01",
        "#006679", "#370E77", "#4B3A83", "#C9E2E6", "#C44170", "#FF4526", "#73BE54", "#C4DF72",
        "#ADFF60", "#00447D", "#DCCEC9", "#BD9479", "#656E5B", "#EC5200", "#FF6EC2", "#7A617E",
        "#DDAEA2", "#77837F", "#A53327", "#608EFF", "#B599D7", "#A50149", "#4E0025", "#C9B1A9",
        "#03919A", "#1B2A25", "#E500F1", "#982E0B", "#B67180", "#E05859", "#006039", "#578F9B",
        "#305230", "#CE934C", "#B3C2BE", "#C0BAC0", "#B506D3", "#170C10", "#4C534F", "#224451",
        "#3E4141", "#78726D", "#B6602B", "#200441", "#DDB588", "#497200", "#C5AAB6", "#033C61",
        "#71B2F5", "#A9E088", "#4979B0", "#A2C3DF", "#784149", "#2D2B17", "#3E0E2F", "#57344C",
        "#0091BE", "#E451D1", "#4B4B6A", "#5C011A", "#7C8060", "#FF9491", "#4C325D", "#005C8B",
        "#E5FDA4", "#68D1B6", "#032641", "#140023", "#8683A9", "#CFFF00", "#A72C3E", "#34475A",
        "#B1BB9A", "#B4A04F", "#8D918E", "#A168A6", "#813D3A", "#425218", "#DA8386", "#776133",
        "#563930", "#8498AE", "#90C1D3", "#B5666B", "#9B585E", "#856465", "#AD7C90", "#E2BC00",
        "#E3AAE0", "#B2C2FE", "#FD0039", "#009B75", "#FFF46D", "#E87EAC", "#DFE3E6", "#848590",
        "#AA9297", "#83A193", "#577977", "#3E7158", "#C64289", "#EA0072", "#C4A8CB", "#55C899",
        "#E78FCF", "#004547", "#F6E2E3", "#966716", "#378FDB", "#435E6A", "#DA0004", "#1B000F",
        "#5B9C8F", "#6E2B52", "#011115", "#E3E8C4", "#AE3B85", "#EA1CA9", "#FF9E6B", "#457D8B",
        "#92678B", "#00CDBB", "#9CCC04", "#002E38", "#96C57F", "#CFF6B4", "#492818", "#766E52",
        "#20370E", "#E3D19F", "#2E3C30", "#B2EACE", "#F3BDA4", "#A24E3D", "#976FD9", "#8C9FA8",
        "#7C2B73", "#4E5F37", "#5D5462", "#90956F", "#6AA776", "#DBCBF6", "#DA71FF", "#987C95",
        "#52323C", "#BB3C42", "#584D39", "#4FC15F", "#A2B9C1", "#79DB21", "#1D5958", "#BD744E",
        "#160B00", "#20221A", "#6B8295", "#00E0E4", "#102401", "#1B782A", "#DAA9B5", "#B0415D",
        "#859253", "#97A094", "#06E3C4", "#47688C", "#7C6755", "#075C00", "#7560D5", "#7D9F00",
        "#C36D96", "#4D913E", "#5F4276", "#FCE4C8", "#303052", "#4F381B", "#E5A532", "#706690",
        "#AA9A92", "#237363", "#73013E", "#FF9079", "#A79A74", "#029BDB", "#FF0169", "#C7D2E7",
        "#CA8869", "#80FFCD", "#BB1F69", "#90B0AB", "#7D74A9", "#FCC7DB", "#99375B", "#00AB4D",
        "#ABAED1", "#BE9D91", "#E6E5A7", "#332C22", "#DD587B", "#F5FFF7", "#5D3033", "#6D3800",
        "#FF0020", "#B57BB3", "#D7FFE6", "#C535A9", "#260009", "#6A8781", "#A8ABB4", "#D45262",
        "#794B61", "#4621B2", "#8DA4DB", "#C7C890", "#6FE9AD", "#A243A7", "#B2B081", "#181B00",
        "#286154", "#4CA43B", "#6A9573", "#A8441D", "#5C727B", "#738671", "#D0CFCB", "#897B77",
        "#1F3F22", "#4145A7", "#DA9894", "#A1757A", "#63243C", "#ADAAFF", "#00CDE2", "#DDBC62",
        "#698EB1", "#208462", "#00B7E0", "#614A44", "#9BBB57", "#7A5C54", "#857A50", "#766B7E",
        "#014833", "#FF8347", "#7A8EBA", "#274740", "#946444", "#EBD8E6", "#646241", "#373917",
        "#6AD450", "#81817B", "#D499E3", "#979440", "#011A12", "#526554", "#B5885C", "#A499A5",
        "#03AD89", "#B3008B", "#E3C4B5", "#96531F", "#867175", "#74569E", "#617D9F", "#E70452",
        "#067EAF", "#A697B6", "#B787A8", "#9CFF93", "#311D19", "#3A9459", "#6E746E", "#B0C5AE",
        "#84EDF7", "#ED3488", "#754C78", "#384644", "#C7847B", "#00B6C5", "#7FA670", "#C1AF9E",
        "#2A7FFF", "#72A58C", "#FFC07F", "#9DEBDD", "#D97C8E", "#7E7C93", "#62E674", "#B5639E",
        "#FFA861", "#C2A580", "#8D9C83", "#B70546", "#372B2E", "#0098FF", "#985975", "#20204C",
        "#FF6C60", "#445083", "#8502AA", "#72361F", "#9676A3", "#484449", "#CED6C2", "#3B164A",
        "#CCA763", "#2C7F77", "#02227B", "#A37E6F", "#CDE6DC", "#CDFFFB", "#BE811A", "#F77183",
        "#EDE6E2", "#CDC6B4", "#FFE09E", "#3A7271", "#FF7B59", "#4E4E01", "#4AC684", "#8BC891",
        "#BC8A96", "#CF6353", "#DCDE5C", "#5EAADD", "#F6A0AD", "#E269AA", "#A3DAE4", "#436E83",
        "#002E17", "#ECFBFF", "#A1C2B6", "#50003F", "#71695B", "#67C4BB", "#536EFF", "#5D5A48",
        "#890039", "#969381", "#371521", "#5E4665", "#AA62C3", "#8D6F81", "#2C6135", "#410601",
        "#564620", "#E69034", "#6DA6BD", "#E58E56", "#E3A68B", "#48B176", "#D27D67", "#B5B268",
        "#7F8427", "#FF84E6", "#435740", "#EAE408", "#F4F5FF", "#325800", "#4B6BA5", "#ADCEFF",
        "#9B8ACC", "#885138", "#5875C1", "#7E7311", "#FEA5CA", "#9F8B5B", "#A55B54", "#89006A",
        "#AF756F", "#2A2000", "#576E4A", "#7F9EFF", "#7499A1", "#FFB550", "#00011E", "#D1511C",
        "#688151", "#BC908A", "#78C8EB", "#8502FF", "#483D30", "#C42221", "#5EA7FF", "#785715",
        "#0CEA91", "#FFFAED", "#B3AF9D", "#3E3D52", "#5A9BC2", "#9C2F90", "#8D5700", "#ADD79C",
        "#00768B", "#337D00", "#C59700", "#3156DC", "#944575", "#ECFFDC", "#D24CB2", "#97703C",
        "#4C257F", "#9E0366", "#88FFEC", "#B56481", "#396D2B", "#56735F", "#988376", "#9BB195",
        "#A9795C", "#E4C5D3", "#9F4F67", "#1E2B39", "#664327", "#AFCE78", "#322EDF", "#86B487",
        "#C23000", "#ABE86B", "#96656D", "#250E35", "#A60019", "#0080CF", "#CAEFFF", "#323F61",
        "#A449DC", "#6A9D3B", "#FF5AE4", "#636A01", "#D16CDA", "#736060", "#FFBAAD", "#D369B4",
        "#FFDED6", "#6C6D74", "#927D5E", "#845D70", "#5B62C1", "#2F4A36", "#E45F35", "#FF3B53",
        "#AC84DD", "#762988", "#70EC98", "#408543", "#2C3533", "#2E182D", "#323925", "#19181B",
        "#2F2E2C", "#023C32", "#9B9EE2", "#58AFAD", "#5C424D", "#7AC5A6", "#685D75", "#B9BCBD",
        "#834357", "#1A7B42", "#2E57AA", "#E55199", "#316E47", "#CD00C5", "#6A004D", "#7FBBEC",
        "#F35691", "#D7C54A", "#62ACB7", "#CBA1BC", "#A28A9A", "#6C3F3B", "#FFE47D", "#DCBAE3",
        "#5F816D", "#3A404A", "#7DBF32", "#E6ECDC", "#852C19", "#285366", "#B8CB9C", "#0E0D00",
        "#4B5D56", "#6B543F", "#E27172", "#0568EC", "#2EB500", "#D21656", "#EFAFFF", "#682021",
        "#2D2011", "#DA4CFF", "#70968E", "#FF7B7D", "#4A1930", "#E8C282", "#E7DBBC", "#A68486",
        "#1F263C", "#36574E", "#52CE79", "#ADAAA9", "#8A9F45", "#6542D2", "#00FB8C", "#5D697B",
        "#CCD27F", "#94A5A1", "#790229", "#E383E6", "#7EA4C1", "#4E4452", "#4B2C00", "#620B70",
        "#314C1E", "#874AA6", "#E30091", "#66460A", "#EB9A8B", "#EAC3A3", "#98EAB3", "#AB9180",
        "#B8552F", "#1A2B2F", "#94DDC5", "#9D8C76", "#9C8333", "#94A9C9", "#392935", "#8C675E",
        "#CCE93A", "#917100", "#01400B", "#449896", "#1CA370", "#E08DA7", "#8B4A4E", "#667776",
        "#4692AD", "#67BDA8", "#69255C", "#D3BFFF", "#4A5132", "#7E9285", "#77733C", "#E7A0CC",
        "#51A288", "#2C656A", "#4D5C5E", "#C9403A", "#DDD7F3", "#005844", "#B4A200", "#488F69",
        "#858182", "#D4E9B9", "#3D7397", "#CAE8CE", "#D60034", "#AA6746", "#9E5585", "#BA6200"
    };

7
En mi humilde opinión, mucho mejor que la respuesta aceptada. ¡Y +1 para ejemplos visuales y listas precalculadas!
Griddo

1
También realicé una búsqueda exhaustiva para maximizar CIEDE2000 entre el color agregado y los colores que ya estaban en el conjunto, con blanco y negro como colores predefinidos. Como tú, llego temprano a dos "tonos de piel": # ff9d25 (tiende al naranja) y # ffb46c (tiende al rosa). Creo que se ven muy similares, por lo que quizás CIEDE2000 no sea una medida de diferencia de color tan buena. Sin embargo, por el momento no hay nada mejor. Es tentador empezar a hacer mis propios experimentos apenas perceptibles de diferencia, tal vez por primera vez con una rejilla 16x16x16 sRGB ...
Olli Niemitalo

Subí a 1024 pero me tomó más de un mes. También puede ejecutar esto con otros conjuntos de colores, tengo una gran variedad de ellos que abarcan toda la gama. Y realmente CIEDE2000 es realmente el mejor. Una de las correcciones en dE2k es el color de la piel, se ven más diferentes para nosotros y son más importantes para muchas funciones. El estándar dE los hace más diferentes de lo que realmente deberían ser. Y el albaricoque y el amarillo opaco se ven bastante diferentes. Godsnotwheregodsnot.blogspot.com/2012/09/…
Tatarize

La única mejora importante que pude ver sería en las listas estáticas. Encontrar el color que está más alejado de todos los demás colores en realidad podría no ser óptimo, si solo necesita exactamente 20 colores. Es posible que pueda obtener mejores resultados si agrupa y encuentra los 20 colores para los que se maximiza la distancia de color entre todos los colores del conjunto. En realidad, esto podría convertirse en un vendedor ambulante y la fuerza bruta (2 ^ 24) ^ 20 a través de un algoritmo de distancia de color muy costoso podría llevar bastante tiempo. Sin embargo, un buen algoritmo de agrupación en clústeres podría brindarle un buen resultado rápidamente.
Tatarize

1
En realidad, después de la inspección, es posible que ni siquiera lo haya hecho durante los dos últimos en el gráfico publicado. Lo estaba produciendo y haciendo una nueva imagen cada vez. Pero, en ese momento, era básicamente un largo bloque de tiempo para cada nuevo color. Y una comprensión completa de que no fueron de gran ayuda.
Tatarizar

23

He puesto una página en línea para generar procedimientos visualmente distintos colores:
http://phrogz.net/css/distinct-colors.html

A diferencia de otras respuestas aquí que recorren uniformemente el espacio RGB o HSV (donde hay una relación no lineal entre los valores del eje y las diferencias de percepción ), mi página utiliza el algoritmo de distancia de color estándar CMI (I: c) para evitar que dos colores sean demasiado visualmente cerca.

La pestaña final de la página le permite ordenar los valores de varias formas y luego intercalarlos (orden aleatorio) para obtener colores muy distintos colocados uno al lado del otro.

En el momento de escribir estas líneas, solo funciona bien en Chrome y Safari, con una corrección para Firefox; utiliza controles deslizantes de entrada de rango HTML5 en la interfaz, que IE9 y Firefox aún no son compatibles de forma nativa.


1
Esta es una gran herramienta, gracias por crearla. Lo usé para generar 145 colores distintos y estoy muy satisfecho con los resultados que creó su herramienta de colores distintos.
Malachy

La idea suena bien, pero no entiendo cómo funciona la interfaz. Digamos que quiero generar 64 colores distantes en el espacio L a b, ¿qué configuración debo usar? No puedo obtener más de 50 colores.
wip

1
@wil La configuración predeterminada en la página de laboratorio comienza con 480 colores para elegir. Cuando vaya a la pestaña Refinar, ajuste el umbral para ver más o menos muestras.
Phrogz

Sin embargo, con 36 colores todavía obtengo varios colores muy similares.
Nemo

8

Creo que el espacio HSV (o HSL) tiene más oportunidades aquí. Si no le importa la conversión adicional, es bastante fácil pasar por todos los colores simplemente girando el valor de Hue. Si eso no es suficiente, puede cambiar los valores de Saturación / Valor / Luminosidad y realizar la rotación nuevamente. O bien, siempre puede cambiar los valores de Hue o cambiar su ángulo de "paso" y rotar más veces.


2
Sin embargo, tenga en cuenta que incluso caminar uniformemente a través del tono produce una separación perceptiva sub-ideal.
Phrogz

4

Hay una falla en las soluciones RGB anteriores. No aprovechan todo el espacio de color, ya que usan un valor de color y 0 para los canales:

#006600
#330000
#FF00FF

En su lugar, deberían usar todos los valores de color posibles para generar colores mezclados que pueden tener hasta 3 valores diferentes en los canales de color:

#336600
#FF0066
#33FF66

Usando el espacio de color completo, puede generar colores más distintos. Por ejemplo, si tiene 4 valores por canal, se pueden generar 4 * 4 * 4 = 64 colores. Con el otro esquema, solo se pueden generar 4 * 7 + 1 = 29 colores.

Si desea N colores, entonces el número de valores por canal requerido es: ceil (cube_root (N))

Con eso, puede determinar los posibles valores (rango 0-255) (python):

max = 255
segs = int(num**(Decimal("1.0")/3))
step = int(max/segs)
p = [(i*step) for i in xrange(segs)]
values = [max]
values.extend(p)

Luego puede iterar sobre los colores RGB (esto no se recomienda):

total = 0
for red in values:
  for green in values:
    for blue in values:
      if total <= N:
        print color(red, green, blue)
      total += 1

Los bucles anidados funcionarán, pero no se recomiendan ya que favorecerán el canal azul y los colores resultantes no tendrán suficiente rojo (N probablemente será menor que el número de todos los valores de color posibles).

Puede crear un mejor algoritmo para los bucles en el que cada canal se trata por igual y se favorecen valores de color más distintos sobre los pequeños.

Tengo una solución, pero no quería publicarla porque no es la más fácil de entender ni la más eficiente. Pero puede ver la solución si realmente lo desea.

Aquí hay una muestra de 64 colores generados: 64 colores


3

Necesitaba la misma funcionalidad, en una forma simple.

Lo que necesitaba era generar colores lo más únicos posible a partir de un valor de índice creciente.

Aquí está el código, en C # (cualquier otra implementación de lenguaje debería ser muy similar)

El mecanismo es muy simple

  1. Se genera un patrón de color_writers a partir de valores indexA de 0 a 7.

  2. Para índices <8, esos colores son = color_writer [indexA] * 255.

  3. Para índices entre 8 y 15, esos colores son = color_writer [indexA] * 255 + (color_writer [indexA + 1]) * 127

  4. Para índices entre 16 y 23, esos colores son = color_writer [indexA] * 255 + (color_writer [indexA + 1]) * 127 + (color_writer [indexA + 2]) * 63

Y así:

Generador de color Rand

    private System.Drawing.Color GetRandColor(int index)
    {
        byte red = 0;
        byte green = 0;
        byte blue = 0;

        for (int t = 0; t <= index / 8; t++)
        {
            int index_a = (index+t) % 8;
            int index_b = index_a / 2;

            //Color writers, take on values of 0 and 1
            int color_red = index_a % 2;
            int color_blue = index_b % 2;
            int color_green = ((index_b + 1) % 3) % 2;

            int add = 255 / (t + 1);

            red = (byte)(red+color_red * add);
            green = (byte)(green + color_green * add);
            blue = (byte)(blue + color_blue * add);
        }

        Color color = Color.FromArgb(red, green, blue);
        return color;
    }

Nota: Para evitar generar colores brillantes y difíciles de ver (en este ejemplo: amarillo sobre fondo blanco) puede modificarlo con un bucle recursivo:

    int skip_index = 0;
    private System.Drawing.Color GetRandColor(int index)
    {
        index += skip_index;
        byte red = 0;
        byte green = 0;
        byte blue = 0;

        for (int t = 0; t <= index / 8; t++)
        {
            int index_a = (index+t) % 8;
            int index_b = index_a / 2;

            //Color writers, take on values of 0 and 1
            int color_red = index_a % 2;
            int color_blue = index_b % 2;
            int color_green = ((index_b + 1) % 3) % 2;

            int add = 255 / (t + 1);

            red = (byte)(red + color_red * add);
            green = (byte)(green + color_green * add);
            blue = (byte)(blue + color_blue * add);
        }

        if(red > 200 && green > 200)
        {
            skip_index++;
            return GetRandColor(index);
        }

        Color color = Color.FromArgb(red, green, blue);
        return color;
    }

1

Comenzaría con un brillo establecido del 100% y primero iría por los colores primarios:

FF0000, 00FF00, 0000FF

luego las combinaciones

FFFF00, FF00FF, 00FFFF

siguiente, por ejemplo, reducir a la mitad el brillo y hacer la misma ronda. No hay demasiados colores claramente distintos, después de estos comenzaría a variar el ancho de la línea y a hacer líneas punteadas / discontinuas, etc.


1
+1 para una excelente sugerencia de usar diferentes estilos de línea en lugar de colores exclusivamente.
Iiridayn

1

Implementé este algoritmo de una manera más corta

void ColorValue::SetColorValue( double r, double g, double b, ColorType myType )
{
   this->c[0] = r;
   this->c[1] = g;
   this->c[2] = b;

   this->type = myType;
}


DistinctColorGenerator::DistinctColorGenerator()
{
   mFactor = 255;
   mColorsGenerated = 0;
   mpColorCycle = new ColorValue[6];
   mpColorCycle[0].SetColorValue( 1.0, 0.0, 0.0, TYPE_RGB);
   mpColorCycle[1].SetColorValue( 0.0, 1.0, 0.0, TYPE_RGB);
   mpColorCycle[2].SetColorValue( 0.0, 0.0, 1.0, TYPE_RGB);
   mpColorCycle[3].SetColorValue( 1.0, 1.0, 0.0, TYPE_RGB);
   mpColorCycle[4].SetColorValue( 1.0, 0.0, 1.0, TYPE_RGB);
   mpColorCycle[5].SetColorValue( 0.0, 1.0, 1.0, TYPE_RGB);
}

//----------------------------------------------------------

ColorValue DistinctColorGenerator::GenerateNewColor()
{
   int innerCycleNr = mColorsGenerated % 6;
   int outerCycleNr = mColorsGenerated / 6;
   int cycleSize = pow( 2, (int)(log((double)(outerCycleNr)) / log( 2.0 ) ) );
   int insideCycleCounter = outerCycleNr % cyclesize;

   if ( outerCycleNr == 0)
   {
      mFactor = 255;
   }
   else
   {
      mFactor = ( 256 / ( 2 * cycleSize ) ) + ( insideCycleCounter * ( 256 / cycleSize ) );
   }

   ColorValue newColor = mpColorCycle[innerCycleNr] * mFactor;

   mColorsGenerated++;
   return newColor;
}

0

También podría pensar en el espacio de color como todas las combinaciones de tres números del 0 al 255, inclusive. Esa es la representación en base 255 de un número entre 0 y 255 ^ 3, forzado a tener tres lugares decimales (agregue ceros al final si es necesario).

Entonces, para generar x número de colores, calcularía x porcentajes espaciados uniformemente, 0 a 100. Obtenga números multiplicando esos porcentajes por 255 ^ 3, convierta esos números a base 255 y agregue ceros como se mencionó anteriormente.

Algoritmo de conversión base, como referencia (en pseudocódigo que es bastante cercano a C #):

int num = (number to convert);
int baseConvert = (desired base, 255 in this case);
(array of ints) nums = new (array of ints);
int x = num;
double digits = Math.Log(num, baseConvert); //or ln(num) / ln(baseConvert)
int numDigits = (digits - Math.Ceiling(digits) == 0 ? (int)(digits + 1) : (int)Math.Ceiling(digits)); //go up one if it turns out even
for (int i = 0; i < numDigits; i++)
{
  int toAdd = ((int)Math.Floor(x / Math.Pow((double)convertBase, (double)(numDigits - i - 1))));
  //Formula for 0th digit: d = num / (convertBase^(numDigits - 1))
  //Then subtract (d * convertBase^(numDigits - 1)) from the num and continue
  nums.Add(toAdd);
  x -= toAdd * (int)Math.Pow((double)convertBase, (double)(numDigits - i - 1));
}
return nums;

Es posible que también tenga que hacer algo para llevar el rango un poco, para evitar tener blanco y negro, si lo desea. Esos números no son en realidad una escala de colores uniforme, pero generarán colores separados si no tiene demasiados.

Esta pregunta tiene más información sobre la conversión base en .NET.


0

para obtener el enésimo color. Solo este tipo de código sería suficiente. Esto lo utilizo en mi problema de agrupación de opencv. Esto creará diferentes colores a medida que cambie el color.

for(int col=1;col<CLUSTER_COUNT+1;col++){
switch(col%6)
   {
   case 1:cout<<Scalar(0,0,(int)(255/(int)(col/6+1)))<<endl;break;
   case 2:cout<<Scalar(0,(int)(255/(int)(col/6+1)),0)<<endl;break;
    case 3:cout<<Scalar((int)(255/(int)(col/6+1)),0,0)<<endl;break;
    case 4:cout<<Scalar(0,(int)(255/(int)(col/6+1)),(int)(255/(int)(col/6+1)))<<endl;break;
    case 5:cout<<Scalar((int)(255/(int)(col/6+1)),0,(int)(255/(int)(col/6+1)))<<endl;break;
    case 0:cout<<Scalar((int)(255/(int)(col/6)),(int)(255/(int)(col/6)),0)<<endl;break;
   }
}

0

En caso de que alguien necesite generar un color oscuro aleatorio de medio a alto para el primer plano blanco en C #, aquí está el código.

[DllImport("shlwapi.dll")]
public static extern int ColorHLSToRGB(int H, int L, int S);

public static string GetRandomDarkColor()
{
    int h = 0, s = 0, l = 0;
    h = (RandomObject.Next(1, 2) % 2 == 0) ? RandomObject.Next(0, 180) : iApp.RandomObject.Next(181, 360);
    s = RandomObject.Next(90, 160);
    l = RandomObject.Next(80, 130);

    return System.Drawing.ColorTranslator.FromWin32(ColorHLSToRGB(h, l, s)).ToHex();
}

private static string ToHex(this System.Drawing.Color c)
{
    return "#" + c.R.ToString("X2") + c.G.ToString("X2") + c.B.ToString("X2");
}

Puede reemplazarlo RandomObjectcon su propio Randomobjeto de clase.


-3

Puede obtener un conjunto aleatorio de sus 3255 valores y compararlo con el último conjunto de 3 valores, asegurándose de que estén al menos a X de los valores anteriores antes de usarlos.

ANTIGUO: 190, 120, 100

NUEVO: 180, 200, 30

Si X = 20, el nuevo conjunto se regeneraría nuevamente.


Tengo la curiosidad de hacer los cálculos y calcular cuánto tiempo pasaría en promedio antes de que este algoritmo entre en un ciclo infinito cuando no hay más soluciones posibles.
Tatarizar

Hm. Por extraño que parezca, su respuesta dice que cualquier valor de r demasiado cercano al otro valor de R provocará la regeneración, es menos de 12 en el mejor de los casos. Aunque extrañamente llamaría a los colores Rojo y Azul demasiado cerca porque ambos tienen un verde de 0 que está dentro de 20. Quiero decir, literalmente, su ejemplo dice: colorcodehex.com/be7864 colorcodehex.com/b4c81e Están demasiado cerca y deben regenerarse.
Tatarizar
Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.