Me encontré con algo. Al principio pensé que podría ser un caso de predicción errónea de rama como es en este caso , pero no puedo explicar por qué la predicción errónea de la rama debería causar este comportamiento.
Implementé dos versiones de Bubble Sort en Java e hice algunas pruebas de rendimiento:
import java.util.Random;
public class BubbleSortAnnomaly {
public static void main(String... args) {
final int ARRAY_SIZE = Integer.parseInt(args[0]);
final int LIMIT = Integer.parseInt(args[1]);
final int RUNS = Integer.parseInt(args[2]);
int[] a = new int[ARRAY_SIZE];
int[] b = new int[ARRAY_SIZE];
Random r = new Random();
for (int run = 0; RUNS > run; ++run) {
for (int i = 0; i < ARRAY_SIZE; i++) {
a[i] = r.nextInt(LIMIT);
b[i] = a[i];
}
System.out.print("Sorting with sortA: ");
long start = System.nanoTime();
int swaps = bubbleSortA(a);
System.out.println( (System.nanoTime() - start) + " ns. "
+ "It used " + swaps + " swaps.");
System.out.print("Sorting with sortB: ");
start = System.nanoTime();
swaps = bubbleSortB(b);
System.out.println( (System.nanoTime() - start) + " ns. "
+ "It used " + swaps + " swaps.");
}
}
public static int bubbleSortA(int[] a) {
int counter = 0;
for (int i = a.length - 1; i >= 0; --i) {
for (int j = 0; j < i; ++j) {
if (a[j] > a[j + 1]) {
swap(a, j, j + 1);
++counter;
}
}
}
return (counter);
}
public static int bubbleSortB(int[] a) {
int counter = 0;
for (int i = a.length - 1; i >= 0; --i) {
for (int j = 0; j < i; ++j) {
if (a[j] >= a[j + 1]) {
swap(a, j, j + 1);
++counter;
}
}
}
return (counter);
}
private static void swap(int[] a, int j, int i) {
int h = a[i];
a[i] = a[j];
a[j] = h;
}
}
Como podemos ver, la única diferencia entre los dos métodos de clasificación es el >frente >=. Cuando se ejecuta el programa con java BubbleSortAnnomaly 50000 10 10, obviamente se esperaría que sortBsea más lento que sortAporque tiene que ejecutar más swap(...)s. Pero obtuve la siguiente salida (o similar) en tres máquinas diferentes:
Sorting with sortA: 4.214 seconds. It used 564960211 swaps.
Sorting with sortB: 2.278 seconds. It used 1249750569 swaps.
Sorting with sortA: 4.199 seconds. It used 563355818 swaps.
Sorting with sortB: 2.254 seconds. It used 1249750348 swaps.
Sorting with sortA: 4.189 seconds. It used 560825110 swaps.
Sorting with sortB: 2.264 seconds. It used 1249749572 swaps.
Sorting with sortA: 4.17 seconds. It used 561924561 swaps.
Sorting with sortB: 2.256 seconds. It used 1249749766 swaps.
Sorting with sortA: 4.198 seconds. It used 562613693 swaps.
Sorting with sortB: 2.266 seconds. It used 1249749880 swaps.
Sorting with sortA: 4.19 seconds. It used 561658723 swaps.
Sorting with sortB: 2.281 seconds. It used 1249751070 swaps.
Sorting with sortA: 4.193 seconds. It used 564986461 swaps.
Sorting with sortB: 2.266 seconds. It used 1249749681 swaps.
Sorting with sortA: 4.203 seconds. It used 562526980 swaps.
Sorting with sortB: 2.27 seconds. It used 1249749609 swaps.
Sorting with sortA: 4.176 seconds. It used 561070571 swaps.
Sorting with sortB: 2.241 seconds. It used 1249749831 swaps.
Sorting with sortA: 4.191 seconds. It used 559883210 swaps.
Sorting with sortB: 2.257 seconds. It used 1249749371 swaps.
Cuando configuro el parámetro para LIMIT, por ejemplo, 50000( java BubbleSortAnnomaly 50000 50000 10), obtengo los resultados esperados:
Sorting with sortA: 3.983 seconds. It used 625941897 swaps.
Sorting with sortB: 4.658 seconds. It used 789391382 swaps.
Porté el programa a C ++ para determinar si este problema es específico de Java. Aquí está el código C ++.
#include <cstdlib>
#include <iostream>
#include <omp.h>
#ifndef ARRAY_SIZE
#define ARRAY_SIZE 50000
#endif
#ifndef LIMIT
#define LIMIT 10
#endif
#ifndef RUNS
#define RUNS 10
#endif
void swap(int * a, int i, int j)
{
int h = a[i];
a[i] = a[j];
a[j] = h;
}
int bubbleSortA(int * a)
{
const int LAST = ARRAY_SIZE - 1;
int counter = 0;
for (int i = LAST; 0 < i; --i)
{
for (int j = 0; j < i; ++j)
{
int next = j + 1;
if (a[j] > a[next])
{
swap(a, j, next);
++counter;
}
}
}
return (counter);
}
int bubbleSortB(int * a)
{
const int LAST = ARRAY_SIZE - 1;
int counter = 0;
for (int i = LAST; 0 < i; --i)
{
for (int j = 0; j < i; ++j)
{
int next = j + 1;
if (a[j] >= a[next])
{
swap(a, j, next);
++counter;
}
}
}
return (counter);
}
int main()
{
int * a = (int *) malloc(ARRAY_SIZE * sizeof(int));
int * b = (int *) malloc(ARRAY_SIZE * sizeof(int));
for (int run = 0; RUNS > run; ++run)
{
for (int idx = 0; ARRAY_SIZE > idx; ++idx)
{
a[idx] = std::rand() % LIMIT;
b[idx] = a[idx];
}
std::cout << "Sorting with sortA: ";
double start = omp_get_wtime();
int swaps = bubbleSortA(a);
std::cout << (omp_get_wtime() - start) << " seconds. It used " << swaps
<< " swaps." << std::endl;
std::cout << "Sorting with sortB: ";
start = omp_get_wtime();
swaps = bubbleSortB(b);
std::cout << (omp_get_wtime() - start) << " seconds. It used " << swaps
<< " swaps." << std::endl;
}
free(a);
free(b);
return (0);
}
Este programa muestra el mismo comportamiento. ¿Alguien puede explicar qué está pasando exactamente aquí?
Ejecutar sortBprimero y luego sortAno cambia los resultados.
>vs>=tendrá un impacto menor. Para obtener números muy significativos para los tiempos que tiene que medir muchos diferentes secuencias y media