El str
descriptor de acceso que está disponible para los pandas.Series
objetos dedtype == object
es en realidad un iterable.
Suponga un pandas.DataFrame
df
:
df = pd.DataFrame(dict(col=[*zip('abcdefghij', range(10, 101, 10))]))
df
col
0 (a, 10)
1 (b, 20)
2 (c, 30)
3 (d, 40)
4 (e, 50)
5 (f, 60)
6 (g, 70)
7 (h, 80)
8 (i, 90)
9 (j, 100)
Podemos probar si es iterable
from collections import Iterable
isinstance(df.col.str, Iterable)
True
Luego podemos asignar a partir de él como hacemos con otros iterables:
var0, var1 = 'xy'
print(var0, var1)
x y
La solución más sencilla
Entonces en una línea podemos asignar ambas columnas
df['a'], df['b'] = df.col.str
df
col a b
0 (a, 10) a 10
1 (b, 20) b 20
2 (c, 30) c 30
3 (d, 40) d 40
4 (e, 50) e 50
5 (f, 60) f 60
6 (g, 70) g 70
7 (h, 80) h 80
8 (i, 90) i 90
9 (j, 100) j 100
Solución más rápida
Solo un poco más complicado, podemos usar zip
para crear un iterable similar
df['c'], df['d'] = zip(*df.col)
df
col a b c d
0 (a, 10) a 10 a 10
1 (b, 20) b 20 b 20
2 (c, 30) c 30 c 30
3 (d, 40) d 40 d 40
4 (e, 50) e 50 e 50
5 (f, 60) f 60 f 60
6 (g, 70) g 70 g 70
7 (h, 80) h 80 h 80
8 (i, 90) i 90 i 90
9 (j, 100) j 100 j 100
En línea
Es decir, no mute los existentes. df
Esto funciona porque assign
toma argumentos de palabras clave donde las palabras clave son los nombres de columna nuevos (o existentes) y los valores serán los valores de la nueva columna. Puede usar un diccionario y descomprimirlo **
y hacer que actúe como argumentos de palabras clave. Así que esta es una forma inteligente de asignar una nueva columna llamada 'g'
que es el primer elemento del df.col.str
iterable y 'h'
que es el segundo elemento del df.col.str
iterable.
df.assign(**dict(zip('gh', df.col.str)))
col g h
0 (a, 10) a 10
1 (b, 20) b 20
2 (c, 30) c 30
3 (d, 40) d 40
4 (e, 50) e 50
5 (f, 60) f 60
6 (g, 70) g 70
7 (h, 80) h 80
8 (i, 90) i 90
9 (j, 100) j 100
Mi versión del list
enfoque
Con comprensión de listas moderna y desempaquetado de variables.
Nota: también en línea usandojoin
df.join(pd.DataFrame([*df.col], df.index, [*'ef']))
col g h
0 (a, 10) a 10
1 (b, 20) b 20
2 (c, 30) c 30
3 (d, 40) d 40
4 (e, 50) e 50
5 (f, 60) f 60
6 (g, 70) g 70
7 (h, 80) h 80
8 (i, 90) i 90
9 (j, 100) j 100
La versión mutante sería
df[['e', 'f']] = pd.DataFrame([*df.col], df.index)
Prueba de ingenuo
DataFrame corto
Utilice uno definido anteriormente
%timeit df.assign(**dict(zip('gh', df.col.str)))
%timeit df.assign(**dict(zip('gh', zip(*df.col))))
%timeit df.join(pd.DataFrame([*df.col], df.index, [*'gh']))
1.16 ms ± 21.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
635 µs ± 18.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
795 µs ± 42.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
DataFrame largo
10 ^ 3 veces más grande
df = pd.concat([df] * 1000, ignore_index=True)
%timeit df.assign(**dict(zip('gh', df.col.str)))
%timeit df.assign(**dict(zip('gh', zip(*df.col))))
%timeit df.join(pd.DataFrame([*df.col], df.index, [*'gh']))
11.4 ms ± 1.53 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.1 ms ± 41.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.33 ms ± 35.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)