¿Cómo reemplazo un programa escrito como una secuencia secuenciada de transiciones de estado con scalaz-stream?


83

Estoy tratando de entender cómo reorganizar un programa que previamente habría escrito como una secuencia de transiciones de estado:

Tengo algo de lógica empresarial:

type In = Long
type Count = Int 
type Out = Count
type S = Map[Int, Count]

val inputToIn: String => Option[In] 
  = s => try Some(s.toLong) catch { case _ : Throwable => None } 

def transition(in: In): S => (S, Out) 
  = s => { val n = s.getOrElse(in, 0); (s + (in -> n+1), n+1) }

val ZeroOut: Out = 0
val InitialState: S = Map.empty 

Con estos, deseo construir un programa para pasar algún estado inicial (un mapa vacío), leer la entrada de stdin , convertirla In, ejecutar la transición de estado y generar el estado actual Sy la salida Outa stdout .


Anteriormente, habría hecho algo como esto:

val runOnce = StateT[IO, S, Out](s => IO.readLn.map(inputToIn) flatMap { 
  case None     => IO((s, ZeroOut))
  case Some(in) => val (t, o) = transition(in)(s)
                   IO.putStrLn(t.toString) |+| IO.putStrLn(o.toString) >| IO((t, o))   
})

Stream.continually(runOnce).sequenceU.eval(InitialState)

Sin embargo, realmente estoy luchando por ver cómo conectar este enfoque (un flujo de transiciones de estado) con scalaz-stream . Empecé con esto:

type Transition = S => (S, Out)
val NoTransition: Transition = s => (s, 0)

io.stdInLines.map(inputToIn).map(_.fold(NoTransition)(transition))

Esto es de tipo: Process[Task, Transition]. Realmente no sé a dónde ir desde allí.

  1. ¿Cómo "paso" mi programa InitialStatey lo ejecuto, enhebrando la salida Sen cada paso como entrada Sal siguiente?
  2. ¿Cómo obtengo los valores de Sy Outen cada paso y los imprimo en stdout (asumiendo que puedo convertirlos en cadenas)?

Al tratar de usar un solo para la comprensión, me quedo atascado de manera similar:

for {
  i <- Process.eval(Task.now(InitialState))
  l <- io.stdInLines.map(inputToIn)
...

¡Cualquier ayuda es muy apreciada!


He llegado un poco más lejos ahora.

type In_ = (S, Option[In])
type Out_ = (S, Out) 

val input: Process[Task, In_] 
  = for  {
      i <- Process.emit(InitialState) 
      o <- io.stdInLines.map(inputToIn)
   } yield (i, o)

val prog =
  input.pipe(process1.collect[In_, Out_]) {
    case (s, Some(in)) => transition(in)(s)
  }).to(io.stdOutLines.contramap[Out_](_.toString))

Entonces

prog.run.run

No funciona: Parece que el estado no se enhebra a través del torrente. Más bien, en cada etapa, se pasa al estado inicial.


Paul Chiusano sugirió utilizar el enfoque de process1.scan. Entonces ahora hago esto:

type In_  = In
type Out_ = (S, Out)

val InitialOut_ = (InitialState, ZeroOut)

val program =
  io.stdInLines.collect(Function.unlift(inputToIn)).pipe(
    process1.scan[In_, Out_](InitialOut_) {
      case ((s, _), in) => transition(in)(s)
    }).to(io.stdOutLines.contramap[Out_](_.shows))

Aquí hay un problema: en este ejemplo específico, mi Outtipo es un monoide , por lo que mi estado inicial se puede crear usando su identidad, pero este no suele ser el caso. ¿Qué haría yo entonces? (Supongo que me vendría bien, Optionpero parece que no es necesario).


Creo que tengo algunos requisitos similares aquí: github.com/etorreborre/specs2/blob/specs2-three/common/src/main/…
Eric

¿No usarías la misma StateTconstrucción que la mónada portadora para tu transmisión? type Carrier[A] = StateT[Task, S, A]; val input: Process[Carrier, Option[In]] = ...; prog.run.run(initialValue).run // prog.run is a Carrier[Unit] i.e. StateT
lmm

Respuestas:


1
import io.FilePath

import scalaz.stream._
import Process._
import scalaz.concurrent.Task
import Task._
import scalaz.{Show, Reducer, Monoid}
import scalaz.std.list._
import scalaz.syntax.foldable._
import scalaz.syntax.bind._
import scalaz.stream._
import io._
import scalaz.stream.text._
import Processes._
import process1.lift
import control.Functions._

/**
 * A Fold[T] can be used to pass over a Process[Task, T].
 * 
 * It has:
 *
 *  - accumulation, with an initial state, of type S, a fold action and an action to perform with the last state
 *  
 *  - side-effects with a Sink[Task, (T, S)] to write to a file for example, using the current element in the Process
 *    and the current accumulated state
 *
 * This covers many of the needs of iterating over a Scalaz stream and is composable because there is a Monoid
 * instance for Folds
 * 
 */
trait Fold[T] {
  type S

  def prepare: Task[Unit]
  def sink: Sink[Task, (T, S)]
  def fold: (T, S) => S
  def init: S
  def last(s: S): Task[Unit]

  /** create a Process1 returning the state values */
  def foldState1: Process1[T, S] =
    Processes.foldState1(fold)(init)

  /** create a Process1 returning the folded elements and the state values */
  def zipWithState1: Process1[T, (T, S)] =
    Processes.zipWithState1(fold)(init)

}

/**
 * Fold functions and typeclasses
 */
object Fold {

  /**
   * Create a Fold from a Sink with no accumulation
   */
  def fromSink[T](aSink: Sink[Task, T]) =  new Fold[T] {
    type S = Unit
    lazy val sink: Sink[Task, (T, S)] = aSink.extend[S]

    def prepare = Task.now(())
    def fold = (t: T, u: Unit) => u
    def init = ()
    def last(u: Unit) = Task.now(u)
  }

  /**
   * Transform a simple sink where the written value doesn't depend on the
   * current state into a sink where the current state is passed all the time
   * (and actually ignored)
   * Create a Fold a State function
   */
  def fromState[T, S1](state: (T, S1) => S1)(initial: S1) = new Fold[T] {
    type S = S1
    lazy val sink: Sink[Task, (T, S)] = unitSink[T, S]

    def prepare = Task.now(())
    def fold = state
    def init = initial
    def last(s: S) = Task.now(())
  }

  /**
   * Create a Fold from a side-effecting function
   */
  def fromFunction[T](f: T => Task[Unit]): Fold[T] =
    fromSink(Process.constant(f))

  /**
   * Create a Fold from a Reducer
   */
  def fromReducer[T, S1](reducer: Reducer[T, S1]): Fold[T] = new Fold[T] {
    type S = S1
    lazy val sink: Sink[Task, (T, S)] = unitSink[T, S]

    def prepare = Task.now(())
    def fold = reducer.cons
    def init = reducer.monoid.zero
    def last(s: S) = Task.now(())
  }

  /**
   * Create a Fold from a Reducer and a last action
   */
  def fromReducerAndLast[T, S1](reducer: Reducer[T, S1], lastTask: S1 => Task[Unit]): Fold[T] = new Fold[T] {
    type S = S1
    lazy val sink: Sink[Task, (T, S)] = unitSink[T, S]

    def prepare = Task.now(())
    def fold = reducer.cons
    def init = reducer.monoid.zero
    def last(s: S) = lastTask(s)
  }

  /**
   * This Sink doesn't do anything
   * It can be used to build a Fold that does accumulation only
   */
  def unitSink[T, S]: Sink[Task, (T, S)] =
    channel((tu: (T, S)) => Task.now(()))

  /**
   * Unit Fold with no side-effect or accumulation
   */
  def unit[T] = fromSink(channel((t: T) => Task.now(())))

  /**
   * Unit fold function
   */
  def unitFoldFunction[T]: (T, Unit) => Unit = (t: T, u: Unit) => u

  /** create a fold sink to output lines to a file */
  def showToFilePath[T : Show, S](path: FilePath): Sink[Task, (T, S)] =
    io.fileChunkW(path.path).pipeIn(lift(Show[T].shows) |> utf8Encode).extend[S]

  implicit class FoldOps[T](val fold: Fold[T]) {
  }

  /**
   * Monoid for Folds, where effects are sequenced
   */
  implicit def foldMonoid[T]: Monoid[Fold[T]] = new Monoid[Fold[T]] {
    def append(f1: Fold[T], f2: =>Fold[T]): Fold[T] = f1 >> f2
    lazy val zero = Fold.unit[T]
  }

  /**
   * create a new Fold sequencing the effects of 2 Folds
   */
  implicit class sequenceFolds[T](val fold1: Fold[T]) {
    def >>(fold2: Fold[T]) = new Fold[T] {
      type S = (fold1.S, fold2.S)

      def prepare = fold1.prepare >> fold2.prepare

      def sink = fold1.sink.zipWith(fold2.sink) { (f1: ((T, fold1.S)) => Task[Unit], f2: ((T, fold2.S)) => Task[Unit]) =>
        (ts: (T, S)) => {
          val (t, (s1, s2)) = ts
          (f1((t, s1)) |@| f2((t, s2)))((_,_))
        }
      }

      def fold = (t : T, s12: (fold1.S, fold2.S)) => (fold1.fold(t, s12._1), fold2.fold(t, s12._2))
      def last(s12: (fold1.S, fold2.S)) = (fold1.last(s12._1) |@| fold2.last(s12._2))((_,_))
      def init = (fold1.init, fold2.init)
    }
  }

  /**
   * Run a fold an return the last value
   */
  def runFoldLast[T](process: Process[Task, T], fold: Fold[T]): Task[fold.S] =
    fold.prepare >>
    logged(process |> fold.zipWithState1).drainW(fold.sink).map(_._2).runLastOr(fold.init)

  /**
   * Run a Fold an let it perform a last action with the accumulated state
   */
  def runFold[T](process: Process[Task, T], fold: Fold[T]): Task[Unit] =
    runFoldLast(process, fold).flatMap(fold.last)

  /**
   * Run a list of Folds, sequenced with the Fold Monoid
   */
  def runFolds[T](process: Process[Task, T], folds: List[Fold[T]]): Task[Unit] =
    runFold(process, folds.suml)

}
Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.