Tengo datos de una encuesta en línea donde los encuestados realizan un ciclo de preguntas de 1 a 3 veces. El software de la encuesta (Qualtrics) registra estos datos en varias columnas, es decir, Q3.2 en la encuesta tendrá columnas Q3.2.1.
, Q3.2.2.
y Q3.2.3.
:
df <- data.frame(
id = 1:10,
time = as.Date('2009-01-01') + 0:9,
Q3.2.1. = rnorm(10, 0, 1),
Q3.2.2. = rnorm(10, 0, 1),
Q3.2.3. = rnorm(10, 0, 1),
Q3.3.1. = rnorm(10, 0, 1),
Q3.3.2. = rnorm(10, 0, 1),
Q3.3.3. = rnorm(10, 0, 1)
)
# Sample data
id time Q3.2.1. Q3.2.2. Q3.2.3. Q3.3.1. Q3.3.2. Q3.3.3.
1 1 2009-01-01 -0.2059165 -0.29177677 -0.7107192 1.52718069 -0.4484351 -1.21550600
2 2 2009-01-02 -0.1981136 -1.19813815 1.1750200 -0.40380049 -1.8376094 1.03588482
3 3 2009-01-03 0.3514795 -0.27425539 1.1171712 -1.02641801 -2.0646661 -0.35353058
...
Quiero combinar todas las columnas QN.N * en columnas QN.N individuales ordenadas, y finalmente terminaré con algo como esto:
id time loop_number Q3.2 Q3.3
1 1 2009-01-01 1 -0.20591649 1.52718069
2 2 2009-01-02 1 -0.19811357 -0.40380049
3 3 2009-01-03 1 0.35147949 -1.02641801
...
11 1 2009-01-01 2 -0.29177677 -0.4484351
12 2 2009-01-02 2 -1.19813815 -1.8376094
13 3 2009-01-03 2 -0.27425539 -2.0646661
...
21 1 2009-01-01 3 -0.71071921 -1.21550600
22 2 2009-01-02 3 1.17501999 1.03588482
23 3 2009-01-03 3 1.11717121 -0.35353058
...
La tidyr
biblioteca tiene la gather()
función, que funciona muy bien para combinar un conjunto de columnas:
library(dplyr)
library(tidyr)
library(stringr)
df %>% gather(loop_number, Q3.2, starts_with("Q3.2")) %>%
mutate(loop_number = str_sub(loop_number,-2,-2)) %>%
select(id, time, loop_number, Q3.2)
id time loop_number Q3.2
1 1 2009-01-01 1 -0.20591649
2 2 2009-01-02 1 -0.19811357
3 3 2009-01-03 1 0.35147949
...
29 9 2009-01-09 3 -0.58581232
30 10 2009-01-10 3 -2.33393981
El marco de datos resultante tiene 30 filas, como se esperaba (10 individuos, 3 bucles cada uno). Sin embargo, la recopilación de un segundo conjunto de columnas no funciona correctamente: crea correctamente las dos columnas combinadas Q3.2
y Q3.3
, pero termina con 90 filas en lugar de 30 (todas las combinaciones de 10 personas, 3 bucles de Q3.2 y 3 bucles de Q3 .3; las combinaciones aumentarán sustancialmente para cada grupo de columnas en los datos reales):
df %>% gather(loop_number, Q3.2, starts_with("Q3.2")) %>%
gather(loop_number, Q3.3, starts_with("Q3.3")) %>%
mutate(loop_number = str_sub(loop_number,-2,-2))
id time loop_number Q3.2 Q3.3
1 1 2009-01-01 1 -0.20591649 1.52718069
2 2 2009-01-02 1 -0.19811357 -0.40380049
3 3 2009-01-03 1 0.35147949 -1.02641801
...
89 9 2009-01-09 3 -0.58581232 -0.13187024
90 10 2009-01-10 3 -2.33393981 -0.48502131
¿Hay alguna manera de usar múltiples llamadas para gather()
así, combinando pequeños subconjuntos de columnas como esta mientras se mantiene el número correcto de filas?
seperate()
para dividir los valores de Q3.3 (y más allá) en sus propias columnas. Pero eso todavía parece una solución hacky realmente indirecta…
spread
Estoy trabajando en una solución ahora: p
df %>% gather(question_number, Q3.2, starts_with("Q3.")) %>% mutate(loop_number = str_sub(question_number,-2,-2), question_number = str_sub(question_number,1,4)) %>% select(id, time, loop_number, question_number, Q3.2) %>% spread(key = question_number, value = Q3.2)
spread()
. Aunque las llamadas múltiples parecen inevitables de todos modos, ya sea que se trate de un montón de correos generate()
electrónicos que funcionan o de correos spread()
electrónicos anidados …
df %>% gather(loop_number, Q3.2, starts_with("Q3."))