Esta es la segunda ronda.
La primera ronda fue lo que se me ocurrió, luego releí los comentarios con el dominio un poco más arraigado en mi cabeza.
Así que aquí está la versión más simple con una prueba unitaria que muestra que funciona según algunas otras versiones.
Primero la versión no concurrente:
import java.util.LinkedHashMap;
import java.util.Map;
public class LruSimpleCache<K, V> implements LruCache <K, V>{
Map<K, V> map = new LinkedHashMap ( );
public LruSimpleCache (final int limit) {
map = new LinkedHashMap <K, V> (16, 0.75f, true) {
@Override
protected boolean removeEldestEntry(final Map.Entry<K, V> eldest) {
return super.size() > limit;
}
};
}
@Override
public void put ( K key, V value ) {
map.put ( key, value );
}
@Override
public V get ( K key ) {
return map.get(key);
}
//For testing only
@Override
public V getSilent ( K key ) {
V value = map.get ( key );
if (value!=null) {
map.remove ( key );
map.put(key, value);
}
return value;
}
@Override
public void remove ( K key ) {
map.remove ( key );
}
@Override
public int size () {
return map.size ();
}
public String toString() {
return map.toString ();
}
}
La verdadera bandera rastreará el acceso de gets y put. Ver JavaDocs. RemoveEdelstEntry sin el indicador verdadero para el constructor simplemente implementaría un caché FIFO (vea las notas a continuación en FIFO y removeEldestEntry).
Aquí está la prueba que demuestra que funciona como un caché LRU:
public class LruSimpleTest {
@Test
public void test () {
LruCache <Integer, Integer> cache = new LruSimpleCache<> ( 4 );
cache.put ( 0, 0 );
cache.put ( 1, 1 );
cache.put ( 2, 2 );
cache.put ( 3, 3 );
boolean ok = cache.size () == 4 || die ( "size" + cache.size () );
cache.put ( 4, 4 );
cache.put ( 5, 5 );
ok |= cache.size () == 4 || die ( "size" + cache.size () );
ok |= cache.getSilent ( 2 ) == 2 || die ();
ok |= cache.getSilent ( 3 ) == 3 || die ();
ok |= cache.getSilent ( 4 ) == 4 || die ();
ok |= cache.getSilent ( 5 ) == 5 || die ();
cache.get ( 2 );
cache.get ( 3 );
cache.put ( 6, 6 );
cache.put ( 7, 7 );
ok |= cache.size () == 4 || die ( "size" + cache.size () );
ok |= cache.getSilent ( 2 ) == 2 || die ();
ok |= cache.getSilent ( 3 ) == 3 || die ();
ok |= cache.getSilent ( 4 ) == null || die ();
ok |= cache.getSilent ( 5 ) == null || die ();
if ( !ok ) die ();
}
Ahora para la versión concurrente ...
paquete org.boon.cache;
import java.util.LinkedHashMap;
import java.util.Map;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
public class LruSimpleConcurrentCache<K, V> implements LruCache<K, V> {
final CacheMap<K, V>[] cacheRegions;
private static class CacheMap<K, V> extends LinkedHashMap<K, V> {
private final ReadWriteLock readWriteLock;
private final int limit;
CacheMap ( final int limit, boolean fair ) {
super ( 16, 0.75f, true );
this.limit = limit;
readWriteLock = new ReentrantReadWriteLock ( fair );
}
protected boolean removeEldestEntry ( final Map.Entry<K, V> eldest ) {
return super.size () > limit;
}
@Override
public V put ( K key, V value ) {
readWriteLock.writeLock ().lock ();
V old;
try {
old = super.put ( key, value );
} finally {
readWriteLock.writeLock ().unlock ();
}
return old;
}
@Override
public V get ( Object key ) {
readWriteLock.writeLock ().lock ();
V value;
try {
value = super.get ( key );
} finally {
readWriteLock.writeLock ().unlock ();
}
return value;
}
@Override
public V remove ( Object key ) {
readWriteLock.writeLock ().lock ();
V value;
try {
value = super.remove ( key );
} finally {
readWriteLock.writeLock ().unlock ();
}
return value;
}
public V getSilent ( K key ) {
readWriteLock.writeLock ().lock ();
V value;
try {
value = this.get ( key );
if ( value != null ) {
this.remove ( key );
this.put ( key, value );
}
} finally {
readWriteLock.writeLock ().unlock ();
}
return value;
}
public int size () {
readWriteLock.readLock ().lock ();
int size = -1;
try {
size = super.size ();
} finally {
readWriteLock.readLock ().unlock ();
}
return size;
}
public String toString () {
readWriteLock.readLock ().lock ();
String str;
try {
str = super.toString ();
} finally {
readWriteLock.readLock ().unlock ();
}
return str;
}
}
public LruSimpleConcurrentCache ( final int limit, boolean fair ) {
int cores = Runtime.getRuntime ().availableProcessors ();
int stripeSize = cores < 2 ? 4 : cores * 2;
cacheRegions = new CacheMap[ stripeSize ];
for ( int index = 0; index < cacheRegions.length; index++ ) {
cacheRegions[ index ] = new CacheMap<> ( limit / cacheRegions.length, fair );
}
}
public LruSimpleConcurrentCache ( final int concurrency, final int limit, boolean fair ) {
cacheRegions = new CacheMap[ concurrency ];
for ( int index = 0; index < cacheRegions.length; index++ ) {
cacheRegions[ index ] = new CacheMap<> ( limit / cacheRegions.length, fair );
}
}
private int stripeIndex ( K key ) {
int hashCode = key.hashCode () * 31;
return hashCode % ( cacheRegions.length );
}
private CacheMap<K, V> map ( K key ) {
return cacheRegions[ stripeIndex ( key ) ];
}
@Override
public void put ( K key, V value ) {
map ( key ).put ( key, value );
}
@Override
public V get ( K key ) {
return map ( key ).get ( key );
}
//For testing only
@Override
public V getSilent ( K key ) {
return map ( key ).getSilent ( key );
}
@Override
public void remove ( K key ) {
map ( key ).remove ( key );
}
@Override
public int size () {
int size = 0;
for ( CacheMap<K, V> cache : cacheRegions ) {
size += cache.size ();
}
return size;
}
public String toString () {
StringBuilder builder = new StringBuilder ();
for ( CacheMap<K, V> cache : cacheRegions ) {
builder.append ( cache.toString () ).append ( '\n' );
}
return builder.toString ();
}
}
Puedes ver por qué cubro primero la versión no concurrente. Lo anterior intenta crear algunas franjas para reducir la contención de bloqueo. Entonces usamos la clave y luego busca esa clave para encontrar el caché real. Esto hace que el tamaño límite sea más una sugerencia / conjetura aproximada dentro de una buena cantidad de error, dependiendo de qué tan bien esté el algoritmo hash de claves.
Aquí está la prueba para mostrar que la versión concurrente probablemente funciona. :) (Prueba bajo fuego sería la forma real).
public class SimpleConcurrentLRUCache {
@Test
public void test () {
LruCache <Integer, Integer> cache = new LruSimpleConcurrentCache<> ( 1, 4, false );
cache.put ( 0, 0 );
cache.put ( 1, 1 );
cache.put ( 2, 2 );
cache.put ( 3, 3 );
boolean ok = cache.size () == 4 || die ( "size" + cache.size () );
cache.put ( 4, 4 );
cache.put ( 5, 5 );
puts (cache);
ok |= cache.size () == 4 || die ( "size" + cache.size () );
ok |= cache.getSilent ( 2 ) == 2 || die ();
ok |= cache.getSilent ( 3 ) == 3 || die ();
ok |= cache.getSilent ( 4 ) == 4 || die ();
ok |= cache.getSilent ( 5 ) == 5 || die ();
cache.get ( 2 );
cache.get ( 3 );
cache.put ( 6, 6 );
cache.put ( 7, 7 );
ok |= cache.size () == 4 || die ( "size" + cache.size () );
ok |= cache.getSilent ( 2 ) == 2 || die ();
ok |= cache.getSilent ( 3 ) == 3 || die ();
cache.put ( 8, 8 );
cache.put ( 9, 9 );
ok |= cache.getSilent ( 4 ) == null || die ();
ok |= cache.getSilent ( 5 ) == null || die ();
puts (cache);
if ( !ok ) die ();
}
@Test
public void test2 () {
LruCache <Integer, Integer> cache = new LruSimpleConcurrentCache<> ( 400, false );
cache.put ( 0, 0 );
cache.put ( 1, 1 );
cache.put ( 2, 2 );
cache.put ( 3, 3 );
for (int index =0 ; index < 5_000; index++) {
cache.get(0);
cache.get ( 1 );
cache.put ( 2, index );
cache.put ( 3, index );
cache.put(index, index);
}
boolean ok = cache.getSilent ( 0 ) == 0 || die ();
ok |= cache.getSilent ( 1 ) == 1 || die ();
ok |= cache.getSilent ( 2 ) != null || die ();
ok |= cache.getSilent ( 3 ) != null || die ();
ok |= cache.size () < 600 || die();
if ( !ok ) die ();
}
}
Esta es la última publicación. La primera publicación que eliminé, ya que era un LFU, no un caché de LRU.
Pensé en darle otra oportunidad. Estaba tratando de encontrar la versión más simple de un caché LRU usando el JDK estándar sin demasiada implementación.
Esto es lo que se me ocurrió. Mi primer intento fue un poco desastroso cuando implementé un LFU en lugar de un LRU, y luego agregué FIFO y el soporte de LRU ... y luego me di cuenta de que se estaba convirtiendo en un monstruo. Luego comencé a hablar con mi amigo John, que apenas estaba interesado, y luego le describí a fondo cómo implementé un LFU, LRU y FIFO y cómo podía cambiarlo con un simple argumento ENUM, y luego me di cuenta de que todo lo que realmente quería fue un simple LRU. Así que ignóreme la publicación anterior y avíseme si desea ver un caché LRU / LFU / FIFO que se puede cambiar a través de una enumeración ... ¿no? Ok .. aquí va.
La LRU más simple posible usando solo el JDK. Implementé tanto una versión concurrente como una versión no concurrente.
Creé una interfaz común (es minimalismo, por lo que probablemente falten algunas características que le gustaría, pero funciona para mis casos de uso, pero si desea ver la función XYZ, hágamelo saber ... vivo para escribir código). .
public interface LruCache<KEY, VALUE> {
void put ( KEY key, VALUE value );
VALUE get ( KEY key );
VALUE getSilent ( KEY key );
void remove ( KEY key );
int size ();
}
Te preguntarás qué es getSilent . Lo uso para probar. getSilent no cambia la puntuación LRU de un elemento.
Primero el no concurrente ...
import java.util.Deque;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.Map;
public class LruCacheNormal<KEY, VALUE> implements LruCache<KEY,VALUE> {
Map<KEY, VALUE> map = new HashMap<> ();
Deque<KEY> queue = new LinkedList<> ();
final int limit;
public LruCacheNormal ( int limit ) {
this.limit = limit;
}
public void put ( KEY key, VALUE value ) {
VALUE oldValue = map.put ( key, value );
/*If there was already an object under this key,
then remove it before adding to queue
Frequently used keys will be at the top so the search could be fast.
*/
if ( oldValue != null ) {
queue.removeFirstOccurrence ( key );
}
queue.addFirst ( key );
if ( map.size () > limit ) {
final KEY removedKey = queue.removeLast ();
map.remove ( removedKey );
}
}
public VALUE get ( KEY key ) {
/* Frequently used keys will be at the top so the search could be fast.*/
queue.removeFirstOccurrence ( key );
queue.addFirst ( key );
return map.get ( key );
}
public VALUE getSilent ( KEY key ) {
return map.get ( key );
}
public void remove ( KEY key ) {
/* Frequently used keys will be at the top so the search could be fast.*/
queue.removeFirstOccurrence ( key );
map.remove ( key );
}
public int size () {
return map.size ();
}
public String toString() {
return map.toString ();
}
}
El queue.removeFirstOccurrence es una operación potencialmente costoso si usted tiene un gran caché. Se podría tomar LinkedList como ejemplo y agregar un mapa hash de búsqueda inversa de elemento a nodo para hacer que las operaciones de eliminación sean MÁS RÁPIDAS y más consistentes. También comencé, pero luego me di cuenta de que no lo necesitaba. Pero tal vez...
Cuando se llama a put , la clave se agrega a la cola. Cuando se llama a get , la clave se elimina y se vuelve a agregar a la parte superior de la cola.
Si su caché es pequeña y la construcción de un artículo es costosa, entonces esta debería ser una buena caché. Si su caché es realmente grande, entonces la búsqueda lineal podría ser un cuello de botella, especialmente si no tiene áreas calientes de caché. Cuanto más intensos sean los puntos calientes, más rápida será la búsqueda lineal, ya que los elementos calientes siempre están en la parte superior de la búsqueda lineal. De todos modos ... lo que se necesita para que esto vaya más rápido es escribir otra LinkedList que tenga una operación de eliminación que tenga un elemento inverso a la búsqueda de nodo para eliminar, luego eliminar sería tan rápido como eliminar una clave de un mapa hash.
Si tiene un caché de menos de 1,000 elementos, esto debería funcionar bien.
Aquí hay una prueba simple para mostrar sus operaciones en acción.
public class LruCacheTest {
@Test
public void test () {
LruCache<Integer, Integer> cache = new LruCacheNormal<> ( 4 );
cache.put ( 0, 0 );
cache.put ( 1, 1 );
cache.put ( 2, 2 );
cache.put ( 3, 3 );
boolean ok = cache.size () == 4 || die ( "size" + cache.size () );
ok |= cache.getSilent ( 0 ) == 0 || die ();
ok |= cache.getSilent ( 3 ) == 3 || die ();
cache.put ( 4, 4 );
cache.put ( 5, 5 );
ok |= cache.size () == 4 || die ( "size" + cache.size () );
ok |= cache.getSilent ( 0 ) == null || die ();
ok |= cache.getSilent ( 1 ) == null || die ();
ok |= cache.getSilent ( 2 ) == 2 || die ();
ok |= cache.getSilent ( 3 ) == 3 || die ();
ok |= cache.getSilent ( 4 ) == 4 || die ();
ok |= cache.getSilent ( 5 ) == 5 || die ();
if ( !ok ) die ();
}
}
El último caché de LRU tenía un solo subproceso, y no lo envuelva en nada sincronizado ...
Aquí hay una puñalada en una versión concurrente.
import java.util.Deque;
import java.util.LinkedList;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.locks.ReentrantLock;
public class ConcurrentLruCache<KEY, VALUE> implements LruCache<KEY,VALUE> {
private final ReentrantLock lock = new ReentrantLock ();
private final Map<KEY, VALUE> map = new ConcurrentHashMap<> ();
private final Deque<KEY> queue = new LinkedList<> ();
private final int limit;
public ConcurrentLruCache ( int limit ) {
this.limit = limit;
}
@Override
public void put ( KEY key, VALUE value ) {
VALUE oldValue = map.put ( key, value );
if ( oldValue != null ) {
removeThenAddKey ( key );
} else {
addKey ( key );
}
if (map.size () > limit) {
map.remove ( removeLast() );
}
}
@Override
public VALUE get ( KEY key ) {
removeThenAddKey ( key );
return map.get ( key );
}
private void addKey(KEY key) {
lock.lock ();
try {
queue.addFirst ( key );
} finally {
lock.unlock ();
}
}
private KEY removeLast( ) {
lock.lock ();
try {
final KEY removedKey = queue.removeLast ();
return removedKey;
} finally {
lock.unlock ();
}
}
private void removeThenAddKey(KEY key) {
lock.lock ();
try {
queue.removeFirstOccurrence ( key );
queue.addFirst ( key );
} finally {
lock.unlock ();
}
}
private void removeFirstOccurrence(KEY key) {
lock.lock ();
try {
queue.removeFirstOccurrence ( key );
} finally {
lock.unlock ();
}
}
@Override
public VALUE getSilent ( KEY key ) {
return map.get ( key );
}
@Override
public void remove ( KEY key ) {
removeFirstOccurrence ( key );
map.remove ( key );
}
@Override
public int size () {
return map.size ();
}
public String toString () {
return map.toString ();
}
}
Las principales diferencias son el uso de ConcurrentHashMap en lugar de HashMap y el uso de Lock (podría haber salido con sincronizado, pero ...).
No lo he probado bajo fuego, pero parece un simple caché LRU que podría funcionar en el 80% de los casos de uso en los que necesita un mapa LRU simple.
Agradezco sus comentarios, excepto por qué no utiliza la biblioteca a, b o c. La razón por la que no siempre uso una biblioteca es porque no siempre quiero que cada archivo war tenga 80 MB, y escribo bibliotecas, por lo que tiendo a hacer que las bibliotecas se puedan conectar con una solución lo suficientemente buena y alguien pueda conectar -en otro proveedor de caché si lo desean. :) Nunca sé cuándo alguien podría necesitar guayaba o ehcache u otra cosa que no quiero incluir, pero si hago que el almacenamiento en caché sea conectable, tampoco los excluiré.
La reducción de dependencias tiene su propia recompensa. Me encanta recibir comentarios sobre cómo hacer esto aún más simple o más rápido o ambos.
Además, si alguien sabe de un listo para ir ...
Ok ... sé lo que estás pensando ... ¿Por qué no solo usa la entrada removeEldest de LinkedHashMap, y bueno debería pero ... pero ... pero ... Eso sería un FIFO no un LRU y estábamos tratando de implementar una LRU.
Map<KEY, VALUE> map = new LinkedHashMap<KEY, VALUE> () {
@Override
protected boolean removeEldestEntry ( Map.Entry<KEY, VALUE> eldest ) {
return this.size () > limit;
}
};
Esta prueba falla para el código anterior ...
cache.get ( 2 );
cache.get ( 3 );
cache.put ( 6, 6 );
cache.put ( 7, 7 );
ok |= cache.size () == 4 || die ( "size" + cache.size () );
ok |= cache.getSilent ( 2 ) == 2 || die ();
ok |= cache.getSilent ( 3 ) == 3 || die ();
ok |= cache.getSilent ( 4 ) == null || die ();
ok |= cache.getSilent ( 5 ) == null || die ();
Así que aquí hay un caché FIFO rápido y sucio usando removeEldestEntry.
import java.util.*;
public class FifoCache<KEY, VALUE> implements LruCache<KEY,VALUE> {
final int limit;
Map<KEY, VALUE> map = new LinkedHashMap<KEY, VALUE> () {
@Override
protected boolean removeEldestEntry ( Map.Entry<KEY, VALUE> eldest ) {
return this.size () > limit;
}
};
public LruCacheNormal ( int limit ) {
this.limit = limit;
}
public void put ( KEY key, VALUE value ) {
map.put ( key, value );
}
public VALUE get ( KEY key ) {
return map.get ( key );
}
public VALUE getSilent ( KEY key ) {
return map.get ( key );
}
public void remove ( KEY key ) {
map.remove ( key );
}
public int size () {
return map.size ();
}
public String toString() {
return map.toString ();
}
}
FIFOs son rápidos. No busques alrededor. Podrías hacer frente a un FIFO frente a una LRU y eso manejaría muy bien la mayoría de las entradas activas. Una LRU mejor necesitará ese elemento inverso a la función Nodo.
De todos modos ... ahora que escribí un código, déjame revisar las otras respuestas y ver lo que me perdí ... la primera vez que las escaneé.
O(1)
versión requerida: stackoverflow.com/questions/23772102/…