Actualizar 2017-08-03
Después de escribir esto, Hadley cambió algunas cosas nuevamente. Las funciones que solían estar en purrr ahora están en un nuevo paquete mixto llamado purrrlyr , descrito como:
purrrlyr contiene algunas funciones que se encuentran en la intersección de purrr y dplyr. Se han eliminado del ronroneo para hacer el paquete más ligero y porque han sido reemplazados por otras soluciones en el tidyverse.
Por lo tanto, deberá instalar + cargar ese paquete para que el siguiente código funcione.
Publicación original
Hadley frecuentemente cambia de opinión acerca de lo que deberíamos usar, pero creo que se supone que debemos cambiar a las funciones en ronroneo para obtener la funcionalidad por fila. Por lo menos, ofrecen la misma funcionalidad y tienen casi la misma interfaz que adplydesde plyr .
Hay dos funciones relacionadas, by_rowy invoke_rows. by_rowSegún tengo entendido, lo usa cuando desea recorrer las filas y agregar los resultados al data.frame. invoke_rowsse usa cuando recorre las filas de un data.frame y pasa cada col como argumento a una función. Solo usaremos el primero.
Ejemplos
library(tidyverse)
iris %>%
by_row(..f = function(this_row) {
browser()
})
Esto nos permite ver los elementos internos (para que podamos ver lo que estamos haciendo), que es lo mismo que hacerlo adply.
Called from: ..f(.d[[i]], ...)
Browse[1]> this_row
# A tibble: 1 × 5
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
<dbl> <dbl> <dbl> <dbl> <fctr>
1 5.1 3.5 1.4 0.2 setosa
Browse[1]> Q
Por defecto, by_rowagrega una columna de lista basada en la salida:
iris %>%
by_row(..f = function(this_row) {
this_row[1:4] %>% unlist %>% mean
})
da:
# A tibble: 150 × 6
Sepal.Length Sepal.Width Petal.Length Petal.Width Species .out
<dbl> <dbl> <dbl> <dbl> <fctr> <list>
1 5.1 3.5 1.4 0.2 setosa <dbl [1]>
2 4.9 3.0 1.4 0.2 setosa <dbl [1]>
3 4.7 3.2 1.3 0.2 setosa <dbl [1]>
4 4.6 3.1 1.5 0.2 setosa <dbl [1]>
5 5.0 3.6 1.4 0.2 setosa <dbl [1]>
6 5.4 3.9 1.7 0.4 setosa <dbl [1]>
7 4.6 3.4 1.4 0.3 setosa <dbl [1]>
8 5.0 3.4 1.5 0.2 setosa <dbl [1]>
9 4.4 2.9 1.4 0.2 setosa <dbl [1]>
10 4.9 3.1 1.5 0.1 setosa <dbl [1]>
# ... with 140 more rows
si en cambio devolvemos a data.frame, obtenemos una lista con data.frames:
iris %>%
by_row( ..f = function(this_row) {
data.frame(
new_col_mean = this_row[1:4] %>% unlist %>% mean,
new_col_median = this_row[1:4] %>% unlist %>% median
)
})
da:
# A tibble: 150 × 6
Sepal.Length Sepal.Width Petal.Length Petal.Width Species .out
<dbl> <dbl> <dbl> <dbl> <fctr> <list>
1 5.1 3.5 1.4 0.2 setosa <data.frame [1 × 2]>
2 4.9 3.0 1.4 0.2 setosa <data.frame [1 × 2]>
3 4.7 3.2 1.3 0.2 setosa <data.frame [1 × 2]>
4 4.6 3.1 1.5 0.2 setosa <data.frame [1 × 2]>
5 5.0 3.6 1.4 0.2 setosa <data.frame [1 × 2]>
6 5.4 3.9 1.7 0.4 setosa <data.frame [1 × 2]>
7 4.6 3.4 1.4 0.3 setosa <data.frame [1 × 2]>
8 5.0 3.4 1.5 0.2 setosa <data.frame [1 × 2]>
9 4.4 2.9 1.4 0.2 setosa <data.frame [1 × 2]>
10 4.9 3.1 1.5 0.1 setosa <data.frame [1 × 2]>
# ... with 140 more rows
La forma en que agregamos la salida de la función está controlada por el .collateparámetro. Hay tres opciones: lista, filas, columnas. Cuando nuestra salida tiene longitud 1, no importa si usamos filas o cols.
iris %>%
by_row(.collate = "cols", ..f = function(this_row) {
this_row[1:4] %>% unlist %>% mean
})
iris %>%
by_row(.collate = "rows", ..f = function(this_row) {
this_row[1:4] %>% unlist %>% mean
})
ambos producen:
# A tibble: 150 × 6
Sepal.Length Sepal.Width Petal.Length Petal.Width Species .out
<dbl> <dbl> <dbl> <dbl> <fctr> <dbl>
1 5.1 3.5 1.4 0.2 setosa 2.550
2 4.9 3.0 1.4 0.2 setosa 2.375
3 4.7 3.2 1.3 0.2 setosa 2.350
4 4.6 3.1 1.5 0.2 setosa 2.350
5 5.0 3.6 1.4 0.2 setosa 2.550
6 5.4 3.9 1.7 0.4 setosa 2.850
7 4.6 3.4 1.4 0.3 setosa 2.425
8 5.0 3.4 1.5 0.2 setosa 2.525
9 4.4 2.9 1.4 0.2 setosa 2.225
10 4.9 3.1 1.5 0.1 setosa 2.400
# ... with 140 more rows
Si sacamos un data.frame con 1 fila, solo importa un poco lo que usamos:
iris %>%
by_row(.collate = "cols", ..f = function(this_row) {
data.frame(
new_col_mean = this_row[1:4] %>% unlist %>% mean,
new_col_median = this_row[1:4] %>% unlist %>% median
)
})
iris %>%
by_row(.collate = "rows", ..f = function(this_row) {
data.frame(
new_col_mean = this_row[1:4] %>% unlist %>% mean,
new_col_median = this_row[1:4] %>% unlist %>% median
)
})
ambos dan:
# A tibble: 150 × 8
Sepal.Length Sepal.Width Petal.Length Petal.Width Species .row new_col_mean new_col_median
<dbl> <dbl> <dbl> <dbl> <fctr> <int> <dbl> <dbl>
1 5.1 3.5 1.4 0.2 setosa 1 2.550 2.45
2 4.9 3.0 1.4 0.2 setosa 2 2.375 2.20
3 4.7 3.2 1.3 0.2 setosa 3 2.350 2.25
4 4.6 3.1 1.5 0.2 setosa 4 2.350 2.30
5 5.0 3.6 1.4 0.2 setosa 5 2.550 2.50
6 5.4 3.9 1.7 0.4 setosa 6 2.850 2.80
7 4.6 3.4 1.4 0.3 setosa 7 2.425 2.40
8 5.0 3.4 1.5 0.2 setosa 8 2.525 2.45
9 4.4 2.9 1.4 0.2 setosa 9 2.225 2.15
10 4.9 3.1 1.5 0.1 setosa 10 2.400 2.30
# ... with 140 more rows
excepto que el segundo tiene la columna llamada .rowy el primero no.
Finalmente, si nuestra salida es más larga que la longitud 1, ya sea como vectoro como a data.framecon filas, entonces importa si usamos filas o columnas para .collate:
mtcars[1:2] %>% by_row(function(x) 1:5)
mtcars[1:2] %>% by_row(function(x) 1:5, .collate = "rows")
mtcars[1:2] %>% by_row(function(x) 1:5, .collate = "cols")
produce, respectivamente:
# A tibble: 32 × 3
mpg cyl .out
<dbl> <dbl> <list>
1 21.0 6 <int [5]>
2 21.0 6 <int [5]>
3 22.8 4 <int [5]>
4 21.4 6 <int [5]>
5 18.7 8 <int [5]>
6 18.1 6 <int [5]>
7 14.3 8 <int [5]>
8 24.4 4 <int [5]>
9 22.8 4 <int [5]>
10 19.2 6 <int [5]>
# ... with 22 more rows
# A tibble: 160 × 4
mpg cyl .row .out
<dbl> <dbl> <int> <int>
1 21 6 1 1
2 21 6 1 2
3 21 6 1 3
4 21 6 1 4
5 21 6 1 5
6 21 6 2 1
7 21 6 2 2
8 21 6 2 3
9 21 6 2 4
10 21 6 2 5
# ... with 150 more rows
# A tibble: 32 × 7
mpg cyl .out1 .out2 .out3 .out4 .out5
<dbl> <dbl> <int> <int> <int> <int> <int>
1 21.0 6 1 2 3 4 5
2 21.0 6 1 2 3 4 5
3 22.8 4 1 2 3 4 5
4 21.4 6 1 2 3 4 5
5 18.7 8 1 2 3 4 5
6 18.1 6 1 2 3 4 5
7 14.3 8 1 2 3 4 5
8 24.4 4 1 2 3 4 5
9 22.8 4 1 2 3 4 5
10 19.2 6 1 2 3 4 5
# ... with 22 more rows
Entonces, el resultado final. Si desea la adply(.margins = 1, ...)funcionalidad, puede usar by_row.
mdplyHace poco pregunté si había un equivalente de in dplyr, y Hadley sugirió que podrían estar preparando algo basado endo. Supongo que también funcionaría aquí.