ImportError: ningún módulo llamado dateutil.parser


134

Recibo el siguiente error al importar pandasen un Pythonprograma

monas-mbp:book mona$ sudo pip install python-dateutil
Requirement already satisfied (use --upgrade to upgrade): python-dateutil in /System/Library/Frameworks/Python.framework/Versions/2.7/Extras/lib/python
Cleaning up...
monas-mbp:book mona$ python t1.py
No module named dateutil.parser
Traceback (most recent call last):
  File "t1.py", line 4, in <module>
    import pandas as pd
  File "/Library/Python/2.7/site-packages/pandas/__init__.py", line 6, in <module>
    from . import hashtable, tslib, lib
  File "tslib.pyx", line 31, in init pandas.tslib (pandas/tslib.c:48782)
ImportError: No module named dateutil.parser

También aquí está el programa:

import codecs 
from math import sqrt
import numpy as np
import pandas as pd

users = {"Angelica": {"Blues Traveler": 3.5, "Broken Bells": 2.0,
                      "Norah Jones": 4.5, "Phoenix": 5.0,
                      "Slightly Stoopid": 1.5,
                      "The Strokes": 2.5, "Vampire Weekend": 2.0},

         "Bill":{"Blues Traveler": 2.0, "Broken Bells": 3.5,
                 "Deadmau5": 4.0, "Phoenix": 2.0,
                 "Slightly Stoopid": 3.5, "Vampire Weekend": 3.0},

         "Chan": {"Blues Traveler": 5.0, "Broken Bells": 1.0,
                  "Deadmau5": 1.0, "Norah Jones": 3.0, "Phoenix": 5,
                  "Slightly Stoopid": 1.0},

         "Dan": {"Blues Traveler": 3.0, "Broken Bells": 4.0,
                 "Deadmau5": 4.5, "Phoenix": 3.0,
                 "Slightly Stoopid": 4.5, "The Strokes": 4.0,
                 "Vampire Weekend": 2.0},

         "Hailey": {"Broken Bells": 4.0, "Deadmau5": 1.0,
                    "Norah Jones": 4.0, "The Strokes": 4.0,
                    "Vampire Weekend": 1.0},

         "Jordyn":  {"Broken Bells": 4.5, "Deadmau5": 4.0,
                     "Norah Jones": 5.0, "Phoenix": 5.0,
                     "Slightly Stoopid": 4.5, "The Strokes": 4.0,
                     "Vampire Weekend": 4.0},

         "Sam": {"Blues Traveler": 5.0, "Broken Bells": 2.0,
                 "Norah Jones": 3.0, "Phoenix": 5.0,
                 "Slightly Stoopid": 4.0, "The Strokes": 5.0},

         "Veronica": {"Blues Traveler": 3.0, "Norah Jones": 5.0,
                      "Phoenix": 4.0, "Slightly Stoopid": 2.5,
                      "The Strokes": 3.0}
        }



class recommender:

    def __init__(self, data, k=1, metric='pearson', n=5):
        """ initialize recommender
        currently, if data is dictionary the recommender is initialized
        to it.
        For all other data types of data, no initialization occurs
        k is the k value for k nearest neighbor
        metric is which distance formula to use
        n is the maximum number of recommendations to make"""
        self.k = k
        self.n = n
        self.username2id = {}
        self.userid2name = {}
        self.productid2name = {}
        # for some reason I want to save the name of the metric
        self.metric = metric
        if self.metric == 'pearson':
            self.fn = self.pearson
        #
        # if data is dictionary set recommender data to it
        #
        if type(data).__name__ == 'dict':
            self.data = data

    def convertProductID2name(self, id):
        """Given product id number return product name"""
        if id in self.productid2name:
            return self.productid2name[id]
        else:
            return id


    def userRatings(self, id, n):
        """Return n top ratings for user with id"""
        print ("Ratings for " + self.userid2name[id])
        ratings = self.data[id]
        print(len(ratings))
        ratings = list(ratings.items())
        ratings = [(self.convertProductID2name(k), v)
                   for (k, v) in ratings]
        # finally sort and return
        ratings.sort(key=lambda artistTuple: artistTuple[1],
                     reverse = True)
        ratings = ratings[:n]
        for rating in ratings:
            print("%s\t%i" % (rating[0], rating[1]))




    def loadBookDB(self, path=''):
        """loads the BX book dataset. Path is where the BX files are
        located"""
        self.data = {}
        i = 0
        #
        # First load book ratings into self.data
        #
        f = codecs.open(path + "BX-Book-Ratings.csv", 'r', 'utf8')
        for line in f:
            i += 1
            #separate line into fields
            fields = line.split(';')
            user = fields[0].strip('"')
            book = fields[1].strip('"')
            rating = int(fields[2].strip().strip('"'))
            if user in self.data:
                currentRatings = self.data[user]
            else:
                currentRatings = {}
            currentRatings[book] = rating
            self.data[user] = currentRatings
        f.close()
        #
        # Now load books into self.productid2name
        # Books contains isbn, title, and author among other fields
        #
        f = codecs.open(path + "BX-Books.csv", 'r', 'utf8')
        for line in f:
            i += 1
            #separate line into fields
            fields = line.split(';')
            isbn = fields[0].strip('"')
            title = fields[1].strip('"')
            author = fields[2].strip().strip('"')
            title = title + ' by ' + author
            self.productid2name[isbn] = title
        f.close()
        #
        #  Now load user info into both self.userid2name and
        #  self.username2id
        #
        f = codecs.open(path + "BX-Users.csv", 'r', 'utf8')
        for line in f:
            i += 1
            #print(line)
            #separate line into fields
            fields = line.split(';')
            userid = fields[0].strip('"')
            location = fields[1].strip('"')
            if len(fields) > 3:
                age = fields[2].strip().strip('"')
            else:
                age = 'NULL'
            if age != 'NULL':
                value = location + '  (age: ' + age + ')'
            else:
                value = location
            self.userid2name[userid] = value
            self.username2id[location] = userid
        f.close()
        print(i)


    def pearson(self, rating1, rating2):
        sum_xy = 0
        sum_x = 0
        sum_y = 0
        sum_x2 = 0
        sum_y2 = 0
        n = 0
        for key in rating1:
            if key in rating2:
                n += 1
                x = rating1[key]
                y = rating2[key]
                sum_xy += x * y
                sum_x += x
                sum_y += y
                sum_x2 += pow(x, 2)
                sum_y2 += pow(y, 2)
        if n == 0:
            return 0
        # now compute denominator
        denominator = (sqrt(sum_x2 - pow(sum_x, 2) / n)
                       * sqrt(sum_y2 - pow(sum_y, 2) / n))
        if denominator == 0:
            return 0
        else:
            return (sum_xy - (sum_x * sum_y) / n) / denominator


    def computeNearestNeighbor(self, username):
        """creates a sorted list of users based on their distance to
        username"""
        distances = []
        for instance in self.data:
            if instance != username:
                distance = self.fn(self.data[username],
                                   self.data[instance])
                distances.append((instance, distance))
        # sort based on distance -- closest first
        distances.sort(key=lambda artistTuple: artistTuple[1],
                       reverse=True)
        return distances

    def recommend(self, user):
       """Give list of recommendations"""
       recommendations = {}
       # first get list of users  ordered by nearness
       nearest = self.computeNearestNeighbor(user)
       #
       # now get the ratings for the user
       #
       userRatings = self.data[user]
       #
       # determine the total distance
       totalDistance = 0.0
       for i in range(self.k):
          totalDistance += nearest[i][1]
       # now iterate through the k nearest neighbors
       # accumulating their ratings
       for i in range(self.k):
          # compute slice of pie 
          weight = nearest[i][1] / totalDistance
          # get the name of the person
          name = nearest[i][0]
          # get the ratings for this person
          neighborRatings = self.data[name]
          # get the name of the person
          # now find bands neighbor rated that user didn't
          for artist in neighborRatings:
             if not artist in userRatings:
                if artist not in recommendations:
                   recommendations[artist] = (neighborRatings[artist]
                                              * weight)
                else:
                   recommendations[artist] = (recommendations[artist]
                                              + neighborRatings[artist]
                                              * weight)
       # now make list from dictionary
       recommendations = list(recommendations.items())
       recommendations = [(self.convertProductID2name(k), v)
                          for (k, v) in recommendations]
       # finally sort and return
       recommendations.sort(key=lambda artistTuple: artistTuple[1],
                            reverse = True)
       # Return the first n items
       return recommendations[:self.n]

r = recommender(users)
# The author implementation
r.loadBookDB('/Users/mona/Downloads/BX-Dump/')

ratings = pd.read_csv('/Users/danialt/BX-CSV-Dump/BX-Book-Ratings.csv', sep=";", quotechar="\"", escapechar="\\")
books = pd.read_csv('/Users/danialt/BX-CSV-Dump/BX-Books.csv', sep=";", quotechar="\"", escapechar="\\")
users = pd.read_csv('/Users/danialt/BX-CSV-Dump/BX-Users.csv', sep=";", quotechar="\"", escapechar="\\")



pivot_rating = ratings.pivot(index='User-ID', columns='ISBN', values='Book-Rating')

use --upgrade to upgrade- ¿Intentaste eso? Parece que dateutilpuede estar desactualizado.
user2357112 es compatible con Monica el

2
quizás intente forzar la reinstalación sudo pip install python-dateutil --force-reinstall... También es relevante ¿cómo instaló los pandas?
Andy Hayden

1
@AndyHayden Resolví el problema en la respuesta. Sin embargo, estoy tratando con un nuevo problema descrito en la respuesta.
Mona Jalal

2
Cuando se resuelva y no sea útil para otros, considere eliminar la pregunta. En lugar de publicar una nueva pregunta en su "respuesta", considere publicar una nueva pregunta ... ¡al menos si también es de interés general para los demás!
HA SALIDO - Anony-Mousse

44
sudo pip install numpy python-dateutil pytz pyparsing six --force-reinstall --upgradefinalmente lo hizo por mí (que estaba a punto de conseguir locas)
GabLeRoux

Respuestas:


255

En Ubuntu, es posible que pipprimero necesite instalar el administrador de paquetes :

sudo apt-get install python-pip

Luego instale el python-dateutilpaquete con:

sudo pip install python-dateutil

8
Se recomienda hacer la instalación de pip sin sudo
MikeL

2
@MikeL Just FYI: probé la instalación de pip sin el sudo en mi RPI y no funcionó. OSError: [Errno 13] Permission denied: '/usr/local/lib/python2.7/dist-packages/dateutil'
Capitán Whippet

1
Si siempre ha usado sudo, sus paquetes están instalados en el sistema (/ usr / ...). Esta es una mala idea, pero viable si eres el único usuario del sistema. Si no, se instalan para su usuario (/ home / yourname / ...). Sin embargo, la recomendación de usar virtualenvs en lugar de instalar en el sistema sigue fortaleciéndose. Consulte packaging.python.org/tutorials/installing-packages para obtener más detalles.
mightypile el



10

Para Python 3 anterior, use:

sudo apt-get install python3-dateutil

1
No creo que esto sea exacto. Es una biblioteca de terceros que ahora se ha portado a python3, pero la instalación aún es pip3 install python-dateutilpara usuarios de python 3
beetree

NO lo use python3-dateutil: es una versión falsa de la cosa real que agrega código malicioso a través de otra biblioteca que dateutil no necesita. Ver github.com/dateutil/dateutil/issues/984
Steve Jalim

4

Si está utilizando un virtualenv , asegúrese de ejecutar pip desde el virtualenv .

$ which pip
/Library/Frameworks/Python.framework/Versions/Current/bin/pip
$ find . -name pip -print
./flask/bin/pip
./flask/lib/python2.7/site-packages/pip
$ ./flask/bin/pip install python-dateutil

4

Ninguna de las soluciones funcionó para mí. Si está utilizando PIP, haga lo siguiente:

pip install pycrypto==2.6.1


3

En Ubuntu 18.04 para Python2:

sudo apt-get install python-dateutil

1

Tengo los mismos problemas en mi MacOS y me funciona intentar instalar python-dateutil

Chequea aquí


0

Si está utilizando Pipenv, es posible que deba agregar esto a su Pipfile:

[packages]
python-dateutil = "*"
Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.