¿Hay una manera fácil en C # de crear ordinales para un número? Por ejemplo:
- 1 vuelve primero
- 2 regresa 2do
- 3 vuelve tercero
- ... etc.
¿Se puede hacer esto String.Format()
o hay alguna función disponible para hacerlo?
¿Hay una manera fácil en C # de crear ordinales para un número? Por ejemplo:
¿Se puede hacer esto String.Format()
o hay alguna función disponible para hacerlo?
Respuestas:
Esta página le ofrece una lista completa de todas las reglas de formato numérico personalizado:
http://msdn.microsoft.com/en-us/library/0c899ak8.aspx
Como puede ver, no hay nada allí sobre ordinales, por lo que no se puede hacer usando String.Format. Sin embargo, no es realmente tan difícil escribir una función para hacerlo.
public static string AddOrdinal(int num)
{
if( num <= 0 ) return num.ToString();
switch(num % 100)
{
case 11:
case 12:
case 13:
return num + "th";
}
switch(num % 10)
{
case 1:
return num + "st";
case 2:
return num + "nd";
case 3:
return num + "rd";
default:
return num + "th";
}
}
Actualización: Técnicamente, los ordinales no existen para <= 0, por lo que he actualizado el código anterior. También eliminó los ToString()
métodos redundantes .
También tenga en cuenta que esto no está internacionalizado. No tengo idea de cómo se ven los ordinales en otros idiomas.
¡Recuerda la internacionalización!
Las soluciones aquí solo funcionan para inglés. Las cosas se vuelven mucho más complejas si necesita admitir otros idiomas.
Por ejemplo, en español "1st" se escribiría como "1.o", "1.a", "1.os" o "1.as" dependiendo de si lo que está contando es masculino, femenino o plural !
Entonces, si su software necesita admitir diferentes idiomas, intente evitar los ordinales.
Mi versión de la versión de Jesse de las versiones de Stu y Samjudson :)
Prueba unitaria incluida para mostrar que la respuesta aceptada es incorrecta cuando el número <1
/// <summary>
/// Get the ordinal value of positive integers.
/// </summary>
/// <remarks>
/// Only works for english-based cultures.
/// Code from: http://stackoverflow.com/questions/20156/is-there-a-quick-way-to-create-ordinals-in-c/31066#31066
/// With help: http://www.wisegeek.com/what-is-an-ordinal-number.htm
/// </remarks>
/// <param name="number">The number.</param>
/// <returns>Ordinal value of positive integers, or <see cref="int.ToString"/> if less than 1.</returns>
public static string Ordinal(this int number)
{
const string TH = "th";
string s = number.ToString();
// Negative and zero have no ordinal representation
if (number < 1)
{
return s;
}
number %= 100;
if ((number >= 11) && (number <= 13))
{
return s + TH;
}
switch (number % 10)
{
case 1: return s + "st";
case 2: return s + "nd";
case 3: return s + "rd";
default: return s + TH;
}
}
[Test]
public void Ordinal_ReturnsExpectedResults()
{
Assert.AreEqual("-1", (1-2).Ordinal());
Assert.AreEqual("0", 0.Ordinal());
Assert.AreEqual("1st", 1.Ordinal());
Assert.AreEqual("2nd", 2.Ordinal());
Assert.AreEqual("3rd", 3.Ordinal());
Assert.AreEqual("4th", 4.Ordinal());
Assert.AreEqual("5th", 5.Ordinal());
Assert.AreEqual("6th", 6.Ordinal());
Assert.AreEqual("7th", 7.Ordinal());
Assert.AreEqual("8th", 8.Ordinal());
Assert.AreEqual("9th", 9.Ordinal());
Assert.AreEqual("10th", 10.Ordinal());
Assert.AreEqual("11th", 11.Ordinal());
Assert.AreEqual("12th", 12.Ordinal());
Assert.AreEqual("13th", 13.Ordinal());
Assert.AreEqual("14th", 14.Ordinal());
Assert.AreEqual("20th", 20.Ordinal());
Assert.AreEqual("21st", 21.Ordinal());
Assert.AreEqual("22nd", 22.Ordinal());
Assert.AreEqual("23rd", 23.Ordinal());
Assert.AreEqual("24th", 24.Ordinal());
Assert.AreEqual("100th", 100.Ordinal());
Assert.AreEqual("101st", 101.Ordinal());
Assert.AreEqual("102nd", 102.Ordinal());
Assert.AreEqual("103rd", 103.Ordinal());
Assert.AreEqual("104th", 104.Ordinal());
Assert.AreEqual("110th", 110.Ordinal());
Assert.AreEqual("111th", 111.Ordinal());
Assert.AreEqual("112th", 112.Ordinal());
Assert.AreEqual("113th", 113.Ordinal());
Assert.AreEqual("114th", 114.Ordinal());
Assert.AreEqual("120th", 120.Ordinal());
Assert.AreEqual("121st", 121.Ordinal());
Assert.AreEqual("122nd", 122.Ordinal());
Assert.AreEqual("123rd", 123.Ordinal());
Assert.AreEqual("124th", 124.Ordinal());
}
Simple, limpio, rápido
private static string GetOrdinalSuffix(int num)
{
if (num.ToString().EndsWith("11")) return "th";
if (num.ToString().EndsWith("12")) return "th";
if (num.ToString().EndsWith("13")) return "th";
if (num.ToString().EndsWith("1")) return "st";
if (num.ToString().EndsWith("2")) return "nd";
if (num.ToString().EndsWith("3")) return "rd";
return "th";
}
O mejor aún, como método de extensión
public static class IntegerExtensions
{
public static string DisplayWithSuffix(this int num)
{
if (num.ToString().EndsWith("11")) return num.ToString() + "th";
if (num.ToString().EndsWith("12")) return num.ToString() + "th";
if (num.ToString().EndsWith("13")) return num.ToString() + "th";
if (num.ToString().EndsWith("1")) return num.ToString() + "st";
if (num.ToString().EndsWith("2")) return num.ToString() + "nd";
if (num.ToString().EndsWith("3")) return num.ToString() + "rd";
return num.ToString() + "th";
}
}
Ahora solo puedes llamar
int a = 1;
a.DisplayWithSuffix();
o incluso tan directo como
1.DisplayWithSuffix();
Tendrás que rodar el tuyo. Desde lo alto de mi cabeza:
public static string Ordinal(this int number)
{
var work = number.ToString();
if ((number % 100) == 11 || (number % 100) == 12 || (number % 100) == 13)
return work + "th";
switch (number % 10)
{
case 1: work += "st"; break;
case 2: work += "nd"; break;
case 3: work += "rd"; break;
default: work += "th"; break;
}
return work;
}
Entonces puedes hacer
Console.WriteLine(432.Ordinal());
Editado para las excepciones del 11/12/13. Dije desde lo alto de mi cabeza :-)
Editado para 1011: otros ya lo han solucionado, solo quieren asegurarse de que otros no tomen esta versión incorrecta.
Más bien me gustaron los elementos de las soluciones de Stu y Samjudson y los trabajé juntos en lo que creo que es un combo utilizable:
public static string Ordinal(this int number)
{
const string TH = "th";
var s = number.ToString();
number %= 100;
if ((number >= 11) && (number <= 13))
{
return s + TH;
}
switch (number % 10)
{
case 1:
return s + "st";
case 2:
return s + "nd";
case 3:
return s + "rd";
default:
return s + TH;
}
}
Si bien aún no he evaluado esto, debería poder obtener un mejor rendimiento evitando todas las declaraciones de casos condicionales.
Esto es Java, pero un puerto a C # es trivial:
public class NumberUtil {
final static String[] ORDINAL_SUFFIXES = {
"th", "st", "nd", "rd", "th", "th", "th", "th", "th", "th"
};
public static String ordinalSuffix(int value) {
int n = Math.abs(value);
int lastTwoDigits = n % 100;
int lastDigit = n % 10;
int index = (lastTwoDigits >= 11 && lastTwoDigits <= 13) ? 0 : lastDigit;
return ORDINAL_SUFFIXES[index];
}
public static String toOrdinal(int n) {
return new StringBuffer().append(n).append(ordinalSuffix(n)).toString();
}
}
Tenga en cuenta que la reducción de condicionales y el uso de la búsqueda de matriz deberían acelerar el rendimiento si se generan muchos ordinales en un ciclo cerrado. Sin embargo, también reconozco que esto no es tan legible como la solución de declaración de caso.
Similar a la solución de Ryan, pero aún más básico, solo uso una matriz simple y uso el día para buscar el ordinal correcto:
private string[] ordinals = new string[] {"","st","nd","rd","th","th","th","th","th","th","th","th","th","th","th","th","th","th","th","th","th","st","nd","rd","th","th","th","th","th","th","th","st" };
DateTime D = DateTime.Now;
String date = "Today's day is: "+ D.Day.ToString() + ordinals[D.Day];
No he tenido la necesidad, pero supongo que podría usar una matriz multidimensional si quisiera tener soporte para múltiples idiomas.
Por lo que puedo recordar de mis días de Uni, este método requiere un esfuerzo mínimo del servidor.
Yo uso esta clase de extensión:
public static class Int32Extensions
{
public static string ToOrdinal(this int i)
{
return (i + "th")
.Replace("1th", "1st")
.Replace("2th", "2nd")
.Replace("3th", "3rd");
}
}
Se solicitó la versión "menos redundante" de la respuesta de samjudson ...
public static string AddOrdinal(int number)
{
if (number <= 0) return number.ToString();
string GetIndicator(int num)
{
switch (num % 100)
{
case 11:
case 12:
case 13:
return "th";
}
switch (num % 10)
{
case 1:
return "st";
case 2:
return "nd";
case 3:
return "rd";
default:
return "th";
}
}
return number + GetIndicator(number);
}
public static
y cambiaría el nombre a un nombre más mnemónico (es decir, "OrdinalSuffix"). La persona que llama puede querer la parte del número en diferentes formatos (es decir, con comas).
private static string GetOrd(int num) => $"{num}{(!(Range(11, 3).Any(n => n == num % 100) ^ Range(1, 3).All(n => n != num % 10)) ? new[] { "ˢᵗ", "ⁿᵈ", "ʳᵈ" }[num % 10 - 1] : "ᵗʰ")}";
Si alguien busca un revestimiento: p
public static string OrdinalSuffix(int ordinal)
{
//Because negatives won't work with modular division as expected:
var abs = Math.Abs(ordinal);
var lastdigit = abs % 10;
return
//Catch 60% of cases (to infinity) in the first conditional:
lastdigit > 3 || lastdigit == 0 || (abs % 100) - lastdigit == 10 ? "th"
: lastdigit == 1 ? "st"
: lastdigit == 2 ? "nd"
: "rd";
}
EDITAR : Como YM_Industries señala en el comentario, la respuesta de samjudson funciona para números superiores a 1000, el comentario de nickf parece haberse ido, y no puedo recordar cuál fue el problema que vi. Dejó esta respuesta aquí para los tiempos de comparación.
Muchos de estos no funcionan para números> 999, como nickf señaló en un comentario (EDITAR: ahora falta).
Aquí hay una versión basada en una versión modificada de la respuesta aceptada de samjudson que sí.
public static String GetOrdinal(int i)
{
String res = "";
if (i > 0)
{
int j = (i - ((i / 100) * 100));
if ((j == 11) || (j == 12) || (j == 13))
res = "th";
else
{
int k = i % 10;
if (k == 1)
res = "st";
else if (k == 2)
res = "nd";
else if (k == 3)
res = "rd";
else
res = "th";
}
}
return i.ToString() + res;
}
También la respuesta de Shahzad Qureshi usando la manipulación de cuerdas funciona bien, sin embargo, tiene una penalización de rendimiento. Para generar muchos de estos, un programa de ejemplo de LINQPad hace que la versión de cadena sea 6-7 veces más lenta que esta entera (aunque tendría que generar mucho para notar).
Ejemplo de LINQPad:
void Main()
{
"Examples:".Dump();
foreach(int i in new int[] {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 22, 113, 122, 201, 202, 211, 212, 2013, 1000003, 10000013 })
Stuff.GetOrdinal(i).Dump();
String s;
System.Diagnostics.Stopwatch sw = System.Diagnostics.Stopwatch.StartNew();
for(int iter = 0; iter < 100000; iter++)
foreach(int i in new int[] {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 22, 113, 122, 201, 202, 211, 212, 2013, 1000003, 1000013 })
s = Stuff.GetOrdinal(i);
"Integer manipulation".Dump();
sw.Elapsed.Dump();
sw.Restart();
for(int iter = 0; iter < 100000; iter++)
foreach(int i in new int[] {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 22, 113, 122, 201, 202, 211, 212, 2013, 1000003, 1000013 })
s = (i.ToString() + Stuff.GetOrdinalSuffix(i));
"String manipulation".Dump();
sw.Elapsed.Dump();
}
public class Stuff
{
// Use integer manipulation
public static String GetOrdinal(int i)
{
String res = "";
if (i > 0)
{
int j = (i - ((i / 100) * 100));
if ((j == 11) || (j == 12) || (j == 13))
res = "th";
else
{
int k = i % 10;
if (k == 1)
res = "st";
else if (k == 2)
res = "nd";
else if (k == 3)
res = "rd";
else
res = "th";
}
}
return i.ToString() + res;
}
// Use string manipulation
public static string GetOrdinalSuffix(int num)
{
if (num.ToString().EndsWith("11")) return "th";
if (num.ToString().EndsWith("12")) return "th";
if (num.ToString().EndsWith("13")) return "th";
if (num.ToString().EndsWith("1")) return "st";
if (num.ToString().EndsWith("2")) return "nd";
if (num.ToString().EndsWith("3")) return "rd";
return "th";
}
}
Basado en las otras respuestas:
public static string Ordinal(int n)
{
int r = n % 100, m = n % 10;
return (r<4 || r>20) && (m>0 && m<4) ? n+" stndrd".Substring(m*2,2) : n+"th";
}
FWIW, para MS-SQL, esta expresión hará el trabajo. Mantenga el primer WHEN ( WHEN num % 100 IN (11, 12, 13) THEN 'th'
) como el primero en la lista, ya que esto se basa en ser probado antes que los demás.
CASE
WHEN num % 100 IN (11, 12, 13) THEN 'th' -- must be tried first
WHEN num % 10 = 1 THEN 'st'
WHEN num % 10 = 2 THEN 'nd'
WHEN num % 10 = 3 THEN 'rd'
ELSE 'th'
END AS Ordinal
Para Excel:
=MID("thstndrdth",MIN(9,2*RIGHT(A1)*(MOD(A1-11,100)>2)+1),2)
La expresión (MOD(A1-11,100)>2)
es VERDADERO (1) para todos los números, excepto los que terminan en 11,12,13
(FALSO = 0). Entonces 2 * RIGHT(A1) * (MOD(A1-11,100)>2) +1)
termina como 1 para el 12/11/13, de lo contrario:
1 evalúa a 3
2 a 5,
3 a 7
otros: 9
- y los 2 caracteres requeridos se seleccionan a "thstndrdth"
partir de esa posición.
Si realmente desea convertir eso directamente a SQL, esto funcionó para mí para un puñado de valores de prueba:
DECLARE @n as int
SET @n=13
SELECT SubString( 'thstndrdth'
, (SELECT MIN(value) FROM
(SELECT 9 as value UNION
SELECT 1+ (2* (ABS(@n) % 10) * CASE WHEN ((ABS(@n)+89) % 100)>2 THEN 1 ELSE 0 END)
) AS Mins
)
, 2
)
Esta es la implementación dart
y puede modificarse según el idioma.
String getOrdinalSuffix(int num){
if (num.toString().endsWith("11")) return "th";
if (num.toString().endsWith("12")) return "th";
if (num.toString().endsWith("13")) return "th";
if (num.toString().endsWith("1")) return "st";
if (num.toString().endsWith("2")) return "nd";
if (num.toString().endsWith("3")) return "rd";
return "th";
}
Si bien hay muchas buenas respuestas aquí, supongo que hay espacio para otra, esta vez basada en la coincidencia de patrones, si no para otra cosa, al menos para una legibilidad discutible
public static string Ordinals1(this int number)
{
switch (number)
{
case int p when p % 100 == 11:
case int q when q % 100 == 12:
case int r when r % 100 == 13:
return $"{number}th";
case int p when p % 10 == 1:
return $"{number}st";
case int p when p % 10 == 2:
return $"{number}nd";
case int p when p % 10 == 3:
return $"{number}rd";
default:
return $"{number}th";
}
}
¿Y qué hace que esta solución sea especial? nada más que el hecho de que estoy agregando algunas consideraciones de rendimiento para varias otras soluciones
francamente, dudo que el rendimiento realmente sea importante para este escenario en particular (que realmente necesita los ordinales de millones de números), pero al menos muestra algunas comparaciones a tener en cuenta ...
1 millón de artículos para referencia (su millaje puede variar según las especificaciones de la máquina, por supuesto)
con coincidencia de patrones y divisiones (esta respuesta)
~ 622 ms
con coincidencia de patrones y cadenas (esta respuesta)
~ 1967 ms
con dos interruptores y divisiones (respuesta aceptada)
~ 637 ms
con un interruptor y divisiones (otra respuesta)
~ 725 ms
void Main()
{
var timer = new Stopwatch();
var numbers = Enumerable.Range(1, 1000000).ToList();
// 1
timer.Reset();
timer.Start();
var results1 = numbers.Select(p => p.Ordinals1()).ToList();
timer.Stop();
timer.Elapsed.TotalMilliseconds.Dump("with pattern matching and divisions");
// 2
timer.Reset();
timer.Start();
var results2 = numbers.Select(p => p.Ordinals2()).ToList();
timer.Stop();
timer.Elapsed.TotalMilliseconds.Dump("with pattern matching and strings");
// 3
timer.Reset();
timer.Start();
var results3 = numbers.Select(p => p.Ordinals3()).ToList();
timer.Stop();
timer.Elapsed.TotalMilliseconds.Dump("with two switches and divisons");
// 4
timer.Reset();
timer.Start();
var results4 = numbers.Select(p => p.Ordinals4()).ToList();
timer.Stop();
timer.Elapsed.TotalMilliseconds.Dump("with one switche and divisons");
}
public static class Extensions
{
public static string Ordinals1(this int number)
{
switch (number)
{
case int p when p % 100 == 11:
case int q when q % 100 == 12:
case int r when r % 100 == 13:
return $"{number}th";
case int p when p % 10 == 1:
return $"{number}st";
case int p when p % 10 == 2:
return $"{number}nd";
case int p when p % 10 == 3:
return $"{number}rd";
default:
return $"{number}th";
}
}
public static string Ordinals2(this int number)
{
var text = number.ToString();
switch (text)
{
case string p when p.EndsWith("11"):
return $"{number}th";
case string p when p.EndsWith("12"):
return $"{number}th";
case string p when p.EndsWith("13"):
return $"{number}th";
case string p when p.EndsWith("1"):
return $"{number}st";
case string p when p.EndsWith("2"):
return $"{number}nd";
case string p when p.EndsWith("3"):
return $"{number}rd";
default:
return $"{number}th";
}
}
public static string Ordinals3(this int number)
{
switch (number % 100)
{
case 11:
case 12:
case 13:
return $"{number}th";
}
switch (number % 10)
{
case 1:
return $"{number}st";
case 2:
return $"{number}nd";
case 3:
return $"{number}rd";
default:
return $"{number}th";
}
}
public static string Ordinals4(this int number)
{
var ones = number % 10;
var tens = Math.Floor(number / 10f) % 10;
if (tens == 1)
{
return $"{number}th";
}
switch (ones)
{
case 1:
return $"{number}th";
case 2:
return $"{number}nd";
case 3:
return $"{number}rd";
default:
return $"{number}th";
}
}
}
Otra línea, pero sin comparaciones al indexar solo el resultado de la expresión regular en una matriz.
public static string GetOrdinalSuffix(int input)
{
return new []{"th", "st", "nd", "rd"}[Convert.ToInt32("0" + Regex.Match(input.ToString(), "(?<!1)[1-3]$").Value)];
}
La versión de PowerShell se puede acortar aún más:
function ord($num) { return ('th','st','nd','rd')[[int]($num -match '(?<!1)[1-3]$') * $matches[0]] }
Aquí está la clase de extensión DateTime. Copiar, pegar y disfrutar
clase estática pública DateTimeExtensions {
public static string ToStringWithOrdinal(this DateTime d)
{
var result = "";
bool bReturn = false;
switch (d.Day % 100)
{
case 11:
case 12:
case 13:
result = d.ToString("dd'th' MMMM yyyy");
bReturn = true;
break;
}
if (!bReturn)
{
switch (d.Day % 10)
{
case 1:
result = d.ToString("dd'st' MMMM yyyy");
break;
case 2:
result = d.ToString("dd'nd' MMMM yyyy");
break;
case 3:
result = d.ToString("dd'rd' MMMM yyyy");
break;
default:
result = d.ToString("dd'th' MMMM yyyy");
break;
}
}
if (result.StartsWith("0")) result = result.Substring(1);
return result;
}
}
Resultado:
9 de octubre de 2014
Otra alternativa que utilicé en base a todas las otras sugerencias, pero no requiere una carcasa especial:
public static string DateSuffix(int day)
{
if (day == 11 | day == 12 | day == 13) return "th";
Math.DivRem(day, 10, out day);
switch (day)
{
case 1:
return "st";
case 2:
return "nd";
case 3:
return "rd";
default:
return "th";
}
}