Inspirado en algunas de las respuestas anteriores que funcionan con paquetes básicos de Python, comparé el rendimiento de algunos (usando Python 3.7.3):
Método 1: ast
import ast
list(map(str.strip, ast.literal_eval(u'[ "A","B","C" , " D"]')))
# ['A', 'B', 'C', 'D']
import timeit
timeit.timeit(stmt="list(map(str.strip, ast.literal_eval(u'[ \"A\",\"B\",\"C\" , \" D\"]')))", setup='import ast', number=100000)
# 1.292875313000195
Método 2: json
import json
list(map(str.strip, json.loads(u'[ "A","B","C" , " D"]')))
# ['A', 'B', 'C', 'D']
import timeit
timeit.timeit(stmt="list(map(str.strip, json.loads(u'[ \"A\",\"B\",\"C\" , \" D\"]')))", setup='import json', number=100000)
# 0.27833264000014424
Método 3: no importar
list(map(str.strip, u'[ "A","B","C" , " D"]'.strip('][').replace('"', '').split(',')))
# ['A', 'B', 'C', 'D']
import timeit
timeit.timeit(stmt="list(map(str.strip, u'[ \"A\",\"B\",\"C\" , \" D\"]'.strip('][').replace('\"', '').split(',')))", number=100000)
# 0.12935059100027502
Me decepcionó ver lo que consideraba que el método con la peor legibilidad era el método con el mejor rendimiento ... hay compensaciones a tener en cuenta al elegir la opción más legible ... para el tipo de cargas de trabajo para las que uso Python. valor de lectura sobre una opción ligeramente más eficiente, pero como siempre depende.