Si desea evitar el gasto de memoria de convertir a una serie de tuplas u otra estructura de datos similar, puede explotar las matrices estructuradas de numpy.
El truco consiste en ver su matriz original como una matriz estructurada donde cada elemento corresponde a una fila de la matriz original. Esto no hace una copia, y es bastante eficiente.
Como un ejemplo rápido:
import numpy as np
data = np.array([[1, 1, 1, 0, 0, 0],
[0, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 0, 0],
[1, 1, 1, 0, 0, 0],
[1, 1, 1, 1, 1, 0]])
ncols = data.shape[1]
dtype = data.dtype.descr * ncols
struct = data.view(dtype)
uniq = np.unique(struct)
uniq = uniq.view(data.dtype).reshape(-1, ncols)
print uniq
Para comprender lo que está sucediendo, eche un vistazo a los resultados intermedios.
Una vez que vemos las cosas como una matriz estructurada, cada elemento de la matriz es una fila en su matriz original. (Básicamente, es una estructura de datos similar a una lista de tuplas).
In [71]: struct
Out[71]:
array([[(1, 1, 1, 0, 0, 0)],
[(0, 1, 1, 1, 0, 0)],
[(0, 1, 1, 1, 0, 0)],
[(1, 1, 1, 0, 0, 0)],
[(1, 1, 1, 1, 1, 0)]],
dtype=[('f0', '<i8'), ('f1', '<i8'), ('f2', '<i8'), ('f3', '<i8'), ('f4', '<i8'), ('f5', '<i8')])
In [72]: struct[0]
Out[72]:
array([(1, 1, 1, 0, 0, 0)],
dtype=[('f0', '<i8'), ('f1', '<i8'), ('f2', '<i8'), ('f3', '<i8'), ('f4', '<i8'), ('f5', '<i8')])
Una vez que ejecutamos numpy.unique
, obtendremos una matriz estructurada:
In [73]: np.unique(struct)
Out[73]:
array([(0, 1, 1, 1, 0, 0), (1, 1, 1, 0, 0, 0), (1, 1, 1, 1, 1, 0)],
dtype=[('f0', '<i8'), ('f1', '<i8'), ('f2', '<i8'), ('f3', '<i8'), ('f4', '<i8'), ('f5', '<i8')])
Que luego debemos ver como una matriz "normal" ( _
almacena el resultado del último cálculo en ipython
, por lo que está viendo _.view...
):
In [74]: _.view(data.dtype)
Out[74]: array([0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0])
Y luego vuelva a formar una matriz 2D ( -1
es un marcador de posición que le dice a numpy que calcule el número correcto de filas, proporcione el número de columnas):
In [75]: _.reshape(-1, ncols)
Out[75]:
array([[0, 1, 1, 1, 0, 0],
[1, 1, 1, 0, 0, 0],
[1, 1, 1, 1, 1, 0]])
Obviamente, si quieres ser más conciso, puedes escribirlo como:
import numpy as np
def unique_rows(data):
uniq = np.unique(data.view(data.dtype.descr * data.shape[1]))
return uniq.view(data.dtype).reshape(-1, data.shape[1])
data = np.array([[1, 1, 1, 0, 0, 0],
[0, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 0, 0],
[1, 1, 1, 0, 0, 0],
[1, 1, 1, 1, 1, 0]])
print unique_rows(data)
Lo que resulta en:
[[0 1 1 1 0 0]
[1 1 1 0 0 0]
[1 1 1 1 1 0]]