¡Por supuesto! Preparar:
>>> import pandas as pd
>>> from random import randint
>>> df = pd.DataFrame({'A': [randint(1, 9) for x in range(10)],
'B': [randint(1, 9)*10 for x in range(10)],
'C': [randint(1, 9)*100 for x in range(10)]})
>>> df
A B C
0 9 40 300
1 9 70 700
2 5 70 900
3 8 80 900
4 7 50 200
5 9 30 900
6 2 80 700
7 2 80 400
8 5 80 300
9 7 70 800
Podemos aplicar operaciones de columna y obtener objetos de la serie booleana:
>>> df["B"] > 50
0 False
1 True
2 True
3 True
4 False
5 False
6 True
7 True
8 True
9 True
Name: B
>>> (df["B"] > 50) & (df["C"] == 900)
0 False
1 False
2 True
3 True
4 False
5 False
6 False
7 False
8 False
9 False
[Actualización, para cambiar a nuevo estilo .loc
]:
Y luego podemos usarlos para indexar en el objeto. Para el acceso de lectura, puede encadenar índices:
>>> df["A"][(df["B"] > 50) & (df["C"] == 900)]
2 5
3 8
Name: A, dtype: int64
pero puede meterse en problemas debido a la diferencia entre una vista y una copia que hace esto para el acceso de escritura. Puedes usar .loc
en su lugar:
>>> df.loc[(df["B"] > 50) & (df["C"] == 900), "A"]
2 5
3 8
Name: A, dtype: int64
>>> df.loc[(df["B"] > 50) & (df["C"] == 900), "A"].values
array([5, 8], dtype=int64)
>>> df.loc[(df["B"] > 50) & (df["C"] == 900), "A"] *= 1000
>>> df
A B C
0 9 40 300
1 9 70 700
2 5000 70 900
3 8000 80 900
4 7 50 200
5 9 30 900
6 2 80 700
7 2 80 400
8 5 80 300
9 7 70 800
Tenga en cuenta que accidentalmente escribí == 900
y no != 900
, o ~(df["C"] == 900)
, pero soy demasiado vago para arreglarlo. Ejercicio para el lector. : ^)
df.query
ypd.eval
parece que encaja bien en este caso de uso. Para obtener información sobre lapd.eval()
familia de funciones, sus características y casos de uso, visite Evaluación de expresión dinámica en pandas usando pd.eval () .