La función de normalización del paquete BBMisc fue la herramienta adecuada para mí, ya que puede manejar los valores de NA.
Aquí está cómo usarlo:
Dado el siguiente conjunto de datos,
ASR_API <- c("CV", "F", "IER", "LS-c", "LS-o")
Human <- c(NA, 5.8, 12.7, NA, NA)
Google <- c(23.2, 24.2, 16.6, 12.1, 28.8)
GoogleCloud <- c(23.3, 26.3, 18.3, 12.3, 27.3)
IBM <- c(21.8, 47.6, 24.0, 9.8, 25.3)
Microsoft <- c(29.1, 28.1, 23.1, 18.8, 35.9)
Speechmatics <- c(19.1, 38.4, 21.4, 7.3, 19.4)
Wit_ai <- c(35.6, 54.2, 37.4, 19.2, 41.7)
dt <- data.table(ASR_API,Human, Google, GoogleCloud, IBM, Microsoft, Speechmatics, Wit_ai)
> dt
ASR_API Human Google GoogleCloud IBM Microsoft Speechmatics Wit_ai
1: CV NA 23.2 23.3 21.8 29.1 19.1 35.6
2: F 5.8 24.2 26.3 47.6 28.1 38.4 54.2
3: IER 12.7 16.6 18.3 24.0 23.1 21.4 37.4
4: LS-c NA 12.1 12.3 9.8 18.8 7.3 19.2
5: LS-o NA 28.8 27.3 25.3 35.9 19.4 41.7
Los valores normalizados se pueden obtener así:
> dtn <- normalize(dt, method = "standardize", range = c(0, 1), margin = 1L, on.constant = "quiet")
> dtn
ASR_API Human Google GoogleCloud IBM Microsoft Speechmatics Wit_ai
1: CV NA 0.3361245 0.2893457 -0.28468670 0.3247336 -0.18127203 -0.16032655
2: F -0.7071068 0.4875320 0.7715885 1.59862532 0.1700986 1.55068347 1.31594762
3: IER 0.7071068 -0.6631646 -0.5143923 -0.12409420 -0.6030768 0.02512682 -0.01746131
4: LS-c NA -1.3444981 -1.4788780 -1.16064578 -1.2680075 -1.24018782 -1.46198764
5: LS-o NA 1.1840062 0.9323361 -0.02919864 1.3762521 -0.15435044 0.32382788
donde el método calculado a mano simplemente ignora las colmuns que contienen NA:
> dt %>% mutate(normalizedHuman = (Human - mean(Human))/sd(Human)) %>%
+ mutate(normalizedGoogle = (Google - mean(Google))/sd(Google)) %>%
+ mutate(normalizedGoogleCloud = (GoogleCloud - mean(GoogleCloud))/sd(GoogleCloud)) %>%
+ mutate(normalizedIBM = (IBM - mean(IBM))/sd(IBM)) %>%
+ mutate(normalizedMicrosoft = (Microsoft - mean(Microsoft))/sd(Microsoft)) %>%
+ mutate(normalizedSpeechmatics = (Speechmatics - mean(Speechmatics))/sd(Speechmatics)) %>%
+ mutate(normalizedWit_ai = (Wit_ai - mean(Wit_ai))/sd(Wit_ai))
ASR_API Human Google GoogleCloud IBM Microsoft Speechmatics Wit_ai normalizedHuman normalizedGoogle
1 CV NA 23.2 23.3 21.8 29.1 19.1 35.6 NA 0.3361245
2 F 5.8 24.2 26.3 47.6 28.1 38.4 54.2 NA 0.4875320
3 IER 12.7 16.6 18.3 24.0 23.1 21.4 37.4 NA -0.6631646
4 LS-c NA 12.1 12.3 9.8 18.8 7.3 19.2 NA -1.3444981
5 LS-o NA 28.8 27.3 25.3 35.9 19.4 41.7 NA 1.1840062
normalizedGoogleCloud normalizedIBM normalizedMicrosoft normalizedSpeechmatics normalizedWit_ai
1 0.2893457 -0.28468670 0.3247336 -0.18127203 -0.16032655
2 0.7715885 1.59862532 0.1700986 1.55068347 1.31594762
3 -0.5143923 -0.12409420 -0.6030768 0.02512682 -0.01746131
4 -1.4788780 -1.16064578 -1.2680075 -1.24018782 -1.46198764
5 0.9323361 -0.02919864 1.3762521 -0.15435044 0.32382788
(NormalizedHuman se hace una lista de NA ...)
Con respecto a la selección de columnas específicas para el cálculo, se puede emplear un método genérico como este:
data_vars <- df_full %>% dplyr::select(-ASR_API,-otherVarNotToBeUsed)
meta_vars <- df_full %>% dplyr::select(ASR_API,otherVarNotToBeUsed)
data_varsn <- normalize(data_vars, method = "standardize", range = c(0, 1), margin = 1L, on.constant = "quiet")
dtn <- cbind(meta_vars,data_varsn)