Estoy leyendo algunos datos meteorológicos automatizados de la web. Las observaciones ocurren cada 5 minutos y se compilan en archivos mensuales para cada estación meteorológica. Una vez que termine de analizar un archivo, el DataFrame se ve así:
Sta Precip1hr Precip5min Temp DewPnt WindSpd WindDir AtmPress
Date
2001-01-01 00:00:00 KPDX 0 0 4 3 0 0 30.31
2001-01-01 00:05:00 KPDX 0 0 4 3 0 0 30.30
2001-01-01 00:10:00 KPDX 0 0 4 3 4 80 30.30
2001-01-01 00:15:00 KPDX 0 0 3 2 5 90 30.30
2001-01-01 00:20:00 KPDX 0 0 3 2 10 110 30.28
El problema que tengo es que a veces un científico regresa y corrige las observaciones, no editando las filas erróneas, sino agregando una fila duplicada al final de un archivo. A continuación se ilustra un ejemplo simple de tal caso:
import pandas
import datetime
startdate = datetime.datetime(2001, 1, 1, 0, 0)
enddate = datetime.datetime(2001, 1, 1, 5, 0)
index = pandas.DatetimeIndex(start=startdate, end=enddate, freq='H')
data1 = {'A' : range(6), 'B' : range(6)}
data2 = {'A' : [20, -30, 40], 'B' : [-50, 60, -70]}
df1 = pandas.DataFrame(data=data1, index=index)
df2 = pandas.DataFrame(data=data2, index=index[:3])
df3 = df2.append(df1)
df3
A B
2001-01-01 00:00:00 20 -50
2001-01-01 01:00:00 -30 60
2001-01-01 02:00:00 40 -70
2001-01-01 03:00:00 3 3
2001-01-01 04:00:00 4 4
2001-01-01 05:00:00 5 5
2001-01-01 00:00:00 0 0
2001-01-01 01:00:00 1 1
2001-01-01 02:00:00 2 2
Y, entonces, necesito df3
convertirme en realidad:
A B
2001-01-01 00:00:00 0 0
2001-01-01 01:00:00 1 1
2001-01-01 02:00:00 2 2
2001-01-01 03:00:00 3 3
2001-01-01 04:00:00 4 4
2001-01-01 05:00:00 5 5
Pensé que agregar una columna de números de fila ( df3['rownum'] = range(df3.shape[0])
) me ayudaría a seleccionar la fila inferior para cualquier valor de la DatetimeIndex
, pero estoy atascado en averiguar las declaraciones group_by
o pivot
(o ???) para que funcione.