Tenga en cuenta que type(numpy.ndarray)
es un type
sí mismo y tenga cuidado con los tipos booleanos y escalares. No se desanime demasiado si no es intuitivo o fácil, es un dolor al principio.
Véase también: - https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.dtypes.html
- https://github.com/machinalis/mypy-data/tree/master/numpy- mypy
>>> import numpy as np
>>> np.ndarray
<class 'numpy.ndarray'>
>>> type(np.ndarray)
<class 'type'>
>>> a = np.linspace(1,25)
>>> type(a)
<class 'numpy.ndarray'>
>>> type(a) == type(np.ndarray)
False
>>> type(a) == np.ndarray
True
>>> isinstance(a, np.ndarray)
True
Diversión con booleanos:
>>> b = a.astype('int32') == 11
>>> b[0]
False
>>> isinstance(b[0], bool)
False
>>> isinstance(b[0], np.bool)
False
>>> isinstance(b[0], np.bool_)
True
>>> isinstance(b[0], np.bool8)
True
>>> b[0].dtype == np.bool
True
>>> b[0].dtype == bool # python equivalent
True
Más diversión con tipos escalares, consulte: - https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.scalars.html#arrays-scalars-built-in
>>> x = np.array([1,], dtype=np.uint64)
>>> x[0].dtype
dtype('uint64')
>>> isinstance(x[0], np.uint64)
True
>>> isinstance(x[0], np.integer)
True # generic integer
>>> isinstance(x[0], int)
False # but not a python int in this case
# Try matching the `kind` strings, e.g.
>>> np.dtype('bool').kind
'b'
>>> np.dtype('int64').kind
'i'
>>> np.dtype('float').kind
'f'
>>> np.dtype('half').kind
'f'
# But be weary of matching dtypes
>>> np.integer
<class 'numpy.integer'>
>>> np.dtype(np.integer)
dtype('int64')
>>> x[0].dtype == np.dtype(np.integer)
False
# Down these paths there be dragons:
# the .dtype attribute returns a kind of dtype, not a specific dtype
>>> isinstance(x[0].dtype, np.dtype)
True
>>> isinstance(x[0].dtype, np.uint64)
False
>>> isinstance(x[0].dtype, np.dtype(np.uint64))
Traceback (most recent call last):
File "<console>", line 1, in <module>
TypeError: isinstance() arg 2 must be a type or tuple of types
# yea, don't go there
>>> isinstance(x[0].dtype, np.int_)
False # again, confusing the .dtype with a specific dtype
# Inequalities can be tricky, although they might
# work sometimes, try to avoid these idioms:
>>> x[0].dtype <= np.dtype(np.uint64)
True
>>> x[0].dtype <= np.dtype(np.float)
True
>>> x[0].dtype <= np.dtype(np.half)
False # just when things were going well
>>> x[0].dtype <= np.dtype(np.float16)
False # oh boy
>>> x[0].dtype == np.int
False # ya, no luck here either
>>> x[0].dtype == np.int_
False # or here
>>> x[0].dtype == np.uint64
True # have to end on a good note!