Dada una media y una varianza, ¿existe una llamada de función simple que trazará una distribución normal?
Dada una media y una varianza, ¿existe una llamada de función simple que trazará una distribución normal?
Respuestas:
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as stats
import math
mu = 0
variance = 1
sigma = math.sqrt(variance)
x = np.linspace(mu - 3*sigma, mu + 3*sigma, 100)
plt.plot(x, stats.norm.pdf(x, mu, sigma))
plt.show()
scipy.stats.norm.pdf(x, mu, sigma)
lugar demlab.normpdf(x, mu, sigma)
math
cuando ya lo ha importado numpy
y podría utilizarlo np.sqrt
?
math
para operaciones escalares ya que, por ejemplo, math.sqrt
es más rápido que np.sqrt
cuando se opera en escalares.
No creo que haya una función que haga todo eso en una sola llamada. Sin embargo, puede encontrar la función de densidad de probabilidad gaussiana en scipy.stats
.
Entonces, la forma más sencilla que se me ocurrió es:
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
# Plot between -10 and 10 with .001 steps.
x_axis = np.arange(-10, 10, 0.001)
# Mean = 0, SD = 2.
plt.plot(x_axis, norm.pdf(x_axis,0,2))
plt.show()
Fuentes:
norm.pdf
a norm(0, 1).pdf
. Esto facilita la adaptación a otros casos / entender que esto genera un objeto que representa una variable aleatoria.
Use seaborn en su lugar, estoy usando distplot de seaborn con media = 5 std = 3 de 1000 valores
value = np.random.normal(loc=5,scale=3,size=1000)
sns.distplot(value)
Obtendrá una curva de distribución normal
Si prefiere utilizar un enfoque paso a paso, podría considerar una solución como la siguiente
import numpy as np
import matplotlib.pyplot as plt
mean = 0; std = 1; variance = np.square(std)
x = np.arange(-5,5,.01)
f = np.exp(-np.square(x-mean)/2*variance)/(np.sqrt(2*np.pi*variance))
plt.plot(x,f)
plt.ylabel('gaussian distribution')
plt.show()
Acabo de volver a esto y tuve que instalar scipy ya que matplotlib.mlab me dio el mensaje de error MatplotlibDeprecationWarning: scipy.stats.norm.pdf
al probar el ejemplo anterior. Entonces la muestra es ahora:
%matplotlib inline
import math
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats
mu = 0
variance = 1
sigma = math.sqrt(variance)
x = np.linspace(mu - 3*sigma, mu + 3*sigma, 100)
plt.plot(x, scipy.stats.norm.pdf(x, mu, sigma))
plt.show()
Creo que es importante establecer la altura, así que creé esta función:
def my_gauss(x, sigma=1, h=1, mid=0):
from math import exp, pow
variance = pow(sdev, 2)
return h * exp(-pow(x-mid, 2)/(2*variance))
Donde sigma
es la desviación estándar, h
es la altura y mid
es la media.
Aquí está el resultado usando diferentes alturas y desviaciones:
puede obtener CDF fácilmente. entonces pdf a través de cdf
import numpy as np
import matplotlib.pyplot as plt
import scipy.interpolate
import scipy.stats
def setGridLine(ax):
#http://jonathansoma.com/lede/data-studio/matplotlib/adding-grid-lines-to-a-matplotlib-chart/
ax.set_axisbelow(True)
ax.minorticks_on()
ax.grid(which='major', linestyle='-', linewidth=0.5, color='grey')
ax.grid(which='minor', linestyle=':', linewidth=0.5, color='#a6a6a6')
ax.tick_params(which='both', # Options for both major and minor ticks
top=False, # turn off top ticks
left=False, # turn off left ticks
right=False, # turn off right ticks
bottom=False) # turn off bottom ticks
data1 = np.random.normal(0,1,1000000)
x=np.sort(data1)
y=np.arange(x.shape[0])/(x.shape[0]+1)
f2 = scipy.interpolate.interp1d(x, y,kind='linear')
x2 = np.linspace(x[0],x[-1],1001)
y2 = f2(x2)
y2b = np.diff(y2)/np.diff(x2)
x2b=(x2[1:]+x2[:-1])/2.
f3 = scipy.interpolate.interp1d(x, y,kind='cubic')
x3 = np.linspace(x[0],x[-1],1001)
y3 = f3(x3)
y3b = np.diff(y3)/np.diff(x3)
x3b=(x3[1:]+x3[:-1])/2.
bins=np.arange(-4,4,0.1)
bins_centers=0.5*(bins[1:]+bins[:-1])
cdf = scipy.stats.norm.cdf(bins_centers)
pdf = scipy.stats.norm.pdf(bins_centers)
plt.rcParams["font.size"] = 18
fig, ax = plt.subplots(3,1,figsize=(10,16))
ax[0].set_title("cdf")
ax[0].plot(x,y,label="data")
ax[0].plot(x2,y2,label="linear")
ax[0].plot(x3,y3,label="cubic")
ax[0].plot(bins_centers,cdf,label="ans")
ax[1].set_title("pdf:linear")
ax[1].plot(x2b,y2b,label="linear")
ax[1].plot(bins_centers,pdf,label="ans")
ax[2].set_title("pdf:cubic")
ax[2].plot(x3b,y3b,label="cubic")
ax[2].plot(bins_centers,pdf,label="ans")
for idx in range(3):
ax[idx].legend()
setGridLine(ax[idx])
plt.show()
plt.clf()
plt.close()
%matplotlib inline
para que aparezca la trama