Querías las matemáticas, así que aquí va:
Necesita conocer el CoC de su cámara, los sensores de tamaño Canon APS-C este número es 0.018, para Nikon APS-C 0.019, para sensores de fotograma completo y película de 35 mm el número es 0.029.
La fórmula es para completar:
CoC (mm) = viewing distance (cm) / desired final-image resolution (lp/mm) for a 25 cm viewing distance / enlargement / 25
Otra forma de hacerlo es la fórmula de Zeiss :
c = d/1730
Donde d es el tamaño diagonal del sensor, y c es el CoC máximo aceptable. Esto produce números ligeramente diferentes.
Primero debe calcular la distancia hiperfocal para su lente y cámara (esta fórmula no es precisa con distancias cercanas a la distancia focal, por ejemplo, macro extrema):
HyperFocal[mm] = (FocalLength * FocalLength) / (Aperture * CoC)
p.ej:
50mm lens @ f/1.4 on a full frame: 61576mm (201.7 feet)
50mm lens @ f/2.8 on a full frame: 30788mm (101 feet)
50mm lens @ f/1.4 on a Canon APS frame: 99206mm (325.4 feet)
50mm lens @ f/2.8 on a Canon APS frame: 49600mm (162.7 feet)
A continuación, debe calcular el punto cercano que es la distancia más cercana que estará enfocada dada la distancia entre la cámara y el sujeto:
NearPoint[mm] = (HyperFocal * distance) / (HyperFocal + (distance – focal))
p.ej:
50mm lens @ f/1.4 on a full frame with a subject at 1m distance: 0.984m (~16mm in front of target)
50mm lens @ f/1.4 on a full frame with a subject at 3m distance: 2.862m (~137mm in front of target)
50mm lens @ f/2.8 on a full frame with a subject at 1m distance: 0.970m (~30mm in front of target)
50mm lens @ f/2.8 on a full frame with a subject at 3m distance: 2.737m (~263mm in front of target)
50mm lens @ f/1.4 on a Canon APS frame with a subject at 1m distance: 0.990m (~10mm in front of target)
50mm lens @ f/1.4 on a Canon APS frame with a subject at 3m distance: 2.913m (~86mm in front of target)
50mm lens @ f/2.8 on a Canon APS frame with a subject at 1m distance: 0.981m (~19mm in front of target)
50mm lens @ f/2.8 on a Canon APS frame with a subject at 3m distance: 2.831m (~168mm in front of target)
A continuación, debe calcular el punto lejano que es la distancia más lejana que estará enfocada dada la distancia entre la cámara y el sujeto:
FarPoint[mm] = (HyperFocal * distance) / (HyperFocal – (distance – focal))
p.ej:
50mm lens @ f/1.4 on a full frame with a subject at 1m distance: 1.015m (~15mm behind of target)
50mm lens @ f/1.4 on a full frame with a subject at 3m distance: 3.150m (~150mm behind of target)
50mm lens @ f/2.8 on a full frame with a subject at 1m distance: 1.031m (~31mm behind of target)
50mm lens @ f/2.8 on a full frame with a subject at 3m distance: 3.317m (~317mm behind of target)
50mm lens @ f/1.4 on a Canon APS frame with a subject at 1m distance: 1.009m (~9mm behind of target)
50mm lens @ f/1.4 on a Canon APS frame with a subject at 3m distance: 3.091m (~91mm behind of target)
50mm lens @ f/2.8 on a Canon APS frame with a subject at 1m distance: 1.019m (~19mm behind of target)
50mm lens @ f/2.8 on a Canon APS frame with a subject at 3m distance: 3.189m (~189mm behind of target)
Ahora puede calcular la distancia focal total:
TotalDoF = FarPoint - NearPoint
p.ej:
50mm lens @ f/1.4 on a full frame with a subject at 1m distance: 31mm
50mm lens @ f/1.4 on a full frame with a subject at 3m distance: 228mm
50mm lens @ f/2.8 on a full frame with a subject at 1m distance: 61mm
50mm lens @ f/2.8 on a full frame with a subject at 3m distance: 580mm
50mm lens @ f/1.4 on a Canon APS frame with a subject at 1m distance: 19mm
50mm lens @ f/1.4 on a Canon APS frame with a subject at 3m distance: 178mm
50mm lens @ f/2.8 on a Canon APS frame with a subject at 1m distance: 38mm
50mm lens @ f/2.8 on a Canon APS frame with a subject at 3m distance: 358mm
Entonces, la fórmula completa con CoC e HyperFocal precalculada:
TotalDoF[mm] = ((HyperFocal * distance) / (HyperFocal – (distance – focal))) -(HyperFocal * distance) / (HyperFocal + (distance – focal))
O simplificado:
TotalDoF[mm] = (2 * HyperFocal * distance * (distance - focal)) / (( HyperFocal + distance - focal) * (HyperFocal + focal - distance))
Con CoC precalulado: he intentado simplificar las siguientes ecuaciones con las siguientes sustituciones: a = distancia de visualización (cm) b = resolución deseada de la imagen final (lp / mm) para una distancia de visualización de 25 cm c = ampliación d = Longitud focal e = apertura f = distancia X = CoC
TotalDoF = ((((d * d) / (e * X)) * f) / (((d * d) / (e * X)) – (f – d))) - ((((d * d) / (e * X)) * f) / (((d * d) / (e * X)) + (f – d)))
Simplificado:
TotalDoF = (2*X*d^2*f*e(d-f))/((d^2 - X*d*e + X*f*e)*(d^2 + X*d*e - X*f*e))
Aún más simplificado con WolframAlpha:
TotalDoF = (2 * d^2 * e * (d - f) * f * X)/(d^4 - e^2 * (d - f)^2 * X^2)
O si nada se calcula previamente, obtienes este monstruo, que no se puede usar:
TotalDoF = ((FocalLength * FocalLength) / (Aperture * (viewing distance (cm) / desired final-image resolution (lp/mm) for a 25 cm viewing distance / enlargement / 25)) * distance) / ((FocalLength * FocalLength) / (Aperture * (viewing distance (cm) / desired final-image resolution (lp/mm) for a 25 cm viewing distance / enlargement / 25)) – (distance – focal)) - ((FocalLength * FocalLength) / (Aperture * (viewing distance (cm) / desired final-image resolution (lp/mm) for a 25 cm viewing distance / enlargement / 25)) * distance) / ((FocalLength * FocalLength) / (Aperture * (viewing distance (cm) / desired final-image resolution (lp/mm) for a 25 cm viewing distance / enlargement / 25)) + (distance – focal))
Simplificado:
(50*a*b*c*d^2*f*e*(d-f))/((25*b*c*d^2 - a*d*e + a*f*e)*(25*b*c*d^2 + a*d*e - a*f*e)
Así que básicamente use CoC recalculado e HyperFocal :)